分享好友 天南地北首页 网站导航

全加器的工作原理

网友发布 2023-07-26 15:40 · 头闻号仪器机械

全加器英语名称为full-adder,是用门电路实现两个二进制数相加并求出和的组合线路,称为一位全加器。一位全加器可以处理低位进位,并输出本位加法进位。多个一位全加器进行级联可以得到多位全加器。常用二进制四位全加器74LS283。

一位全加器(FA)的逻辑表达式为:

S=A⊕B⊕Cin;Cout=AB+BCin+ACin,其中A,B为要相加的数,Cin为进位输入;S为和,Co是进位输出;如果要实现多位加法可以进行级联,就是串起来使用。

比如32位+32位,就需要32个全加器;这种级联就是串行结构速度慢,如果要并行快速相加可以用超前进位加法。

如果将全加器的输入置换成A和B的组合函数Xi和Y(S0…S3控制),然后再将X,Y和进位数通过全加器进行全加,就是ALU的逻辑结构结构。即 X=f(A,B);Y=f(A,B)不同的控制参数可以得到不同的组合函数,因而能够实现多种算术运算和逻辑运算。

扩展资料:

有了全加器,构造加法器就非常容易了,假设有A3A2A1A0和B3B2B1B0,利用全加器构造A3A2A1A0+B3B2B1B0的串行进位加法器电路图。

其中C-1=0,因为已是最低位,没有进位。这种串联方法只是完成了基本功能,从效率上则完全不可行。

假设全加器中每个元器件的时延为t,则全加器的时延为2t(见全加器电路图),对于4位加法器,按照这种串联方法,加法器构造方法1中图中最右边(最低位)全加器计算完成后,才能计算右二个全加器,以此类推。

因此,4位加法器至少需要4*2t=8t的时延;如果是32位,则是64t的时延。显然,这种加法器的效率与参与计算的二进数长度成正比,数越长,时延越长。在现代计算机中,是不可能采用如此低效的加法器的。

只需要把Ci和参与运算的两个4位二进制数之间的关系梳理清楚就行了。直接用代入法展开得:

在这个关系式里,直接列出了4位二进制加法的最终进位,不用等待低位计算完了,再计算高位,而是直接进行计算,最终得到的超前进位加法器电路图。

假设超前进位加法器中的每个门时延是t,对于4位加法,最多经过4t的时延,而且,即使增加更多的位数,其时延也是4t。

对比串行进位加法器和超前进位加法器,前者线路简单,时延与参与计算的二进制串长度成正比,而后者则是线路复杂,时延是固定值。

通常,对于32的二进制串,可以对其进行分组,每8位一组,组内加法用超前进位加法器,组间进位则用串行进位。采用这种折中方法,既保证了效率,又降低了内部线路复杂度。

百度百科-全加器

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
打赏 0
更多相关文章

收藏

点赞