1如图的电路中,电源电压为12V,且保持不变,当电键S闭合时,电流表A的示数为02A,电压表V的示数为8V,求: (1)电阻R2的阻值 (2)电流表A的最大示数 (3)电阻R2消耗的最大功率 解:(1)电压表测的是R两端的电压,R与R2串联,所以R2两端的电压为:U2=U源-U=12V-8V=4V R2=U2/I=4V/02A=20Ω (2)当滑动变阻器的阻值为0时,电流表示数最大,所以I最=U源/R2 =12V/20Ω=06A (3)当滑动变阻器的阻值为0时,R2分得的电压最大,即等于电源电压,这时功率也最大: P=(U源)(I最 )=12V06A =72W
2如图所示,电源电压不变,R为0-20Ω的滑动变阻器,R0为防止短路的定值电阻,当变阻器的接入电阻为10Ω时,电流表的示数为04A,在改变R的接入电阻的过程中,记录到电流表的示数分别为038A,048A,050A,052A。在上述数据中,只有哪一个有可能是变阻器接入电阻为8Ω时的电流值
解(1)由于电路中的总电阻变小,电路中的电流必然增大,所以可先淘汰038A(因为它小于04A)
(2) 因为串联电路中电压的分配与电阻成正比,因而当滑动变阻器的阻值由10Ω降为8Ω时,它两端的电压必然会减小,我们分别用 048A,050A,052A与8Ω相乘可得滑动变阻器分得的电压分别为 384V, 4V, 416V,而其中只有384V小于4V,所以只有048A是正确的
3三个同样的电阻,两个并联后再于第三个串联,已知他们的额定功率均为10瓦,求这个电路允许消耗的最大功率?
解:2个电阻并联后的总电阻为:R/2(由1/R总=1/R+1/R得出) , 由于串联电路有中电压的分配与电阻成正比,所以并联部分分得的电压是第三只串联电阻所分电压的1/2;故当串联的电阻两端电压达到额定电压时,电路消耗的功率为最大(并联的两只电阻两端电压不能达到它的额定电压,因为这时串联的那只电阻就承受不了了),此时串联连接的第3个电阻消耗的功率正好等于它的额定功率为10W,并联连接的电阻每只消耗的功率为25W(因为并联部分分得的电压为第三只的1/2)。所以电路允许消耗的最大功率为10W+25W+25W=15W。
4"220V 100W"的灯泡正常工作时的电阻是多少若把这只灯泡接到110V的电源上,灯泡的实际电功率为多少工作10分钟消耗电能多少1度电能让它工作多少小时
解:(1)灯泡电阻为:R=U^2/P=(220V)^2/100W=484欧
(2)实际功率:P1=U1^2/R=(110V)^2/484欧=25W。
(3)10分钟消耗的电能:W=Pt=25W600s=15000J。 (4)在110V下:t=W/P=1KWh/25W=1KWh/0025KW=40h
5 已知电阻R为20欧。断开电键K时,电流表A的示数为02安;闭合电键K时,电流表A的示数为06安。求:(1)电源电压U (2)灯L的阻值。(3)电键K断开时,通电10秒,电流通过L所做的功
解:(1)由于电键闭合与断开时通过灯泡的电流是个定值,所以电键闭合时通过R的电流为:06A-02A=04A 则可以求出电源电压U=IR=04A20Ω=8V
(2)R灯=U/I灯=8V/02A=40Ω
(3)W=I^2Rt=(02A)^240Ω10S=16J
6一个额定功率为1W的玩具电动机,正常工作时在2秒内将150克的钩码匀速提高1米,求此装置的效率(g取10N每千克)
解:电功:W=UIt=Pt=1W2s=2J
有用功:W有=Gh=150g10N/kg 1m=15J
效率:15J/2J=75%
7把"6v 3w"与"6v 1w"的电灯串联接入某一电路中,如果让其中一个灯泡正常发光,电路两端的电压应是多少(灯丝电阻不随温度改变)
解:初学者最易犯的错误是: 6v+6v=12V,这是因为在串联电路中电压的分配与电阻成正比,两只灯泡的电阻不同,它们两端的电压必然不同,让两只灯泡同时正常发光是不可能满足的,也就是说两个6v既然无法同时出现,则将它们相加来求电路两端的电压是没有意义的
正确的解法是:第一只灯泡的电阻为:R=U^2/P=(6v)^2/3w"=12Ω
第二只灯泡的电阻为:R=U^2/P=(6v)^2/1w"=36Ω
根据串联电路中电压的分配与电阻成正比可知:当两只灯泡串联时,第二只灯泡两端电压应是第一只的3倍,若要让第一只灯泡正常发光,则第二只灯泡就要被烧坏了,我们只能让第二只灯泡正常发光,这时它两端电压为6V,而第一只灯泡两端电压只有2V(第二只无法正常发光,但保证了两只灯泡都没有被损坏),因而电路两端的电压应是: 6V+2V=8V
8若把两定值电阻R1,R2以某种形式连接起来与电源接通,R1消耗的电功率是9W;若把此二电阻换成另一种连接后,仍与该电源接通,则R1消耗的电功率为16W且通过R2的电流为4A那么电源电压和R1,R2的阻值各是多大(电源电压保持不变)
解:若R1消耗的功率较小,一定是串联分压,使它两端的电压减小,功率减小的
两灯串联时,R1的功率为9W,则:
[U/(R1+R2)]^2R1=9 -------(1)
两灯并联时,R1的功率为16W
U^2/R1=16 ---------------(2)
U/R2=4 ----------------(3)
联立三式,可解得:R1=9欧,R2=3欧,电源电压U=12V
9某个电路里的电阻值为R1,已知R1的额定功率为P1,为了使这个电路允许通过的电流扩为原来正常值的20倍,而不至于烧坏电阻R1
1)应该如何改进这个电路(答案可用分式,画出电路图,并加以说明)
2)改进后的电路里的总电阻的额定功率p是原来P1的多少倍
解:(1)可用并联分流的方法
P1=I1^2R1,则I1=√(P1/R1)
则I2=I-I1=20I1-I1=19I1
R2=U/I2=U/(19I1)=1/19R1
(2)改进后的电路中的总电阻为:
R总=R1R2/(R1+R2)=1/19R1^2/(20/19R1)=1/20R1
则总的额定功率为:P=U^2/R总=U^2/(1/20R1)=20U^2/R1=20P1
高中物理,短路和断路的判断~
一、质点的运动(1)------直线运动
1)匀变速直线运动
1平均速度V平=s/t(定义式) 2有用推论Vt2-Vo2=2as
3中间时刻速度Vt/2=V平=(Vt+Vo)/2 4末速度Vt=Vo+at
5中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6位移s=V平t=Vot+at2/2=Vt/2t
7加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=36km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1初速度Vo=0 2末速度Vt=gt
3下落高度h=gt2/2(从Vo位置向下计算) 4推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=98m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1位移s=Vot-gt2/2 2末速度Vt=Vo-gt (g=98m/s2≈10m/s2)
3有用推论Vt2-Vo2=-2gs 4上升最大高度Hm=Vo2/2g(抛出点算起)
5往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1水平方向速度:Vx=Vo 2竖直方向速度:Vy=gt
3水平方向位移:x=Vot 4竖直方向位移:y=gt2/2
5运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1线速度V=s/t=2πr/T 2角速度ω=Φ/t=2π/T=2πf
3向心加速度a=V2/r=ω2r=(2π/T)2r 4向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5周期与频率:T=1/f 6角速度与线速度的关系:V=ωr
7角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2万有引力定律:F=Gm1m2/r2 (G=667×10-11Nm2/kg2,方向在它们的连线上)
3天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=79km/s;V2=112km/s;V3=167km/s
6地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为79km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1重力G=mg (方向竖直向下,g=98m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5万有引力F=Gm1m2/r2 (G=667×10-11Nm2/kg2,方向在它们的连线上)
6静电力F=kQ1Q2/r2 (k=90×109Nm2/C2,方向在它们的连线上)
7电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3合力大小范围:|F1-F2|≤F≤|F1+F2|
4力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3受迫振动频率特点:f=f驱动力
4发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5机械波、横波、纵波〔见第二册P2〕
6波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3冲量:I=Ft {I:冲量(Ns),F:恒力(N),t:力的作用时间(s),方向由F决定}
4动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
七、功和能(功是能量转化的量度)
1功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2重力做功:Wab=mghab {m:物体的质量,g=98m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
八、分子动理论、能量守恒定律
1阿伏加德罗常数NA=602×1023/mol;分子直径数量级10-10米
2油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7热力学第三定律:热力学零度不可达到{宇宙温度下限:-27315摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1013×105Pa=76cmHg(1Pa=1N/m2)
2气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
1两种电荷、电荷守恒定律、元电荷:(e=160×10-19C);带电体电荷量等于元电荷的整数倍
2库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=90×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=160×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
十一、恒定电流
1电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3电阻、电阻定律:R=ρL/S{ρ:电阻率(Ωm),L:导体的长度(m),S:导体横截面积(m2)}
4闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11伏安法测电阻
电流表内接法: 电流表外接法:
电压表示数:U=UR+UA 电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<<RV [或Rx<(RARV)1/2]
12滑动变阻器在电路中的限流接法与分压接法
电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp<Rx
十二、磁场
1磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/Am
2安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:(a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
十三、电磁感应
1[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
4自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。
十四、交变电流(正弦式交变电流)
1电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
(5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。
十五、光的反射和折射(几何光学)
1反射定律α=i {α;反射角,i:入射角}
2绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
高中物理~判断短路的方法
如果是电阻出问题的话,断路,电流表无示数;短路,肯定烧坏了。那么转到灯泡
肯定不是灯泡短路,若是短路的话,电压表短路,无示数(因为电压表测的可以看作是导线两端电压,而导线是等势体,电压处处相等)。
那么假设是灯泡断路。那么开始时电流表测的是一条支路电流,现在测的是干路电流,示数增大。而根据I=E/(R+r)。外电阻R增大,则干路电流与之前干路电压相比减小(但肯定比之前电流表这条支路电流大),那么根据U=E-Ir,I减小,U增大(U为外电路电压),即电压表示数增大!
看电压表测什么电压看与其并联的是什么就照了,与电压表并联的开始有灯泡,定值电阻,所以就是测这两个的电压,也就是外电路电压。故障后也是如此!!测定值电阻电压,也就是外电路电压。
希望有帮助!
在电路中怎么区分短路和断路呢?求详解?
电流不通过电器直接接通叫做短路。发生短路时,因电流过大往往引起机器损坏或火灾。
1) 短路就是不同电位的导电部分之间的低阻性短接,相当于电源未经过负载而直接由导线接通成闭合回路。短路电流是指不接用电器时的电流,相当于直接找个导线把电池的正负相连接时的电流。(通常这是一种严重而应该尽可能避免电路的故障,会导致电路因电流过大而烧毁并发生火灾。)
2) 在串联电路中,用导线或开关直接将某电路元件或负载的两端连接起来。(这是因需要并不会导致因电流过大而发生烧毁现象的安全连接,是一种局部或部分的短路。如用几十只小灯泡串联而成的节日小彩灯,为了延长它的使用寿命,当其中某只灯丝断开而损坏后,其内部的特别结构会自动将其两端连接而使其他小灯泡正常工作。)
[编辑本段]短路在物理学的解释
电力系统在运行中 ,相与相之间或相与地(或中性线)之间发生非正常连接(即短路)时而流过非常大的电流。其电流值远大于额定电流 ,并取决于短路点距电源的电气距离。例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达额定电流的10~15倍。大容量电力系统中,短路电流可达数万安。这会对电力系统的正常运行造成严重影响和后果。
三相系统中发生的短路有 4 种基本类型:三相短路,两相短路,单相对地短路和两相对地短路。其中,除三相短路时,三相回路依旧对称,因而又称对称短路外,其余三类均属不对称短路。在中性点接地的电力网络中,以一相对地的短路故障最多,约占全部故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。
发生短路时,电力系统从正常的稳定状态过渡到短路的稳定状态,一般需3~5秒。在这一暂态过程中,短路电流的变化很复杂。它有多种分量,其计算需采用电子计算机。在短路后约半个周波(001秒)时将出现短路电流的最大瞬时值,称为冲击电流。它会产生很大的电动力,其大小可用来校验电工设备在发生短路时机械应力的动稳定性。短路电流的分析、计算是电力系统分析的重要内容之一。它为电力系统的规划设计和运行中选择电工设备、整定继电保护、分析事故提供了有效手段。
电气线路上,由于种种原因相接或相碰,产生电流忽然增大的现象称短路。相线之间相碰叫相同短路;相线与地线、与接地导体或与大地直接相碰叫对地短路。在短路电流忽然增大时,其瞬间放热量很大,大大超过线路正常工作时的发热量,不仅能使绝缘烧毁,而且能使金属熔化,引起可燃物燃烧发生火灾。 造成短路的主要原因有:1、线路老化,绝缘破坏而造成短路;2、电源过电压,造成绝缘击穿;3、小动物(如蛇、野兔、猫等)跨接在裸线上;4、人为的多种乱拉乱接造成;5、室外架空线的线路松弛,大风作用下碰撞;6、线路安装过低与各种运输物品或金属物品相碰造成短路
短路就是电路中电源正负极直接连在了一起。 如果是根据初中教材,导线是无电阻的,电源无内阻,此时电路电流可以看作无穷大,电压即为电池电动势。但用电压表测电路两端电压将为0。 如果根据高中教材,导线有电阻,电源有内阻,那么电路电流也十分大。用电压表测电压几乎为0 短路时将烧坏电源! 断路就是电路中电源正负极或导线断开,电流无法通过。此时电阻无穷大,电流为0,电压要看测量范围。测量整个电路还有电压,但是测量无断路区域就无电压。 电路故障分析主要看不同位置电流电压表测量结果。多看例题,多总结,多问老师,这才是关键。 短路有两种情形: 1、不同相位的相线相碰,相间短路。 2、相线和地线(零线)相碰,对地短路。 都是用电事故 电气设备在正常工作时,电路中电流由电源的一端经过电气设备后回到电源的另一端形成回路。若蒋电路的回路切断或因某种原因发生断线,电路中电流不能流通,电路不能形成回路,就叫做断路。 电源的两端不经过任何电气设备,直接被导线连通叫做短路。短路时,电路内会出现非常大的电流,叫做短路电流。当电路发生短路时,短路电流可能增大到远远超过导线所允许的电流限度,致使导线剧烈升温,甚至烧毁电气设备,引起火灾。
参考资料:
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报