分享好友 天南地北首页 网站导航

什么是狄利克雷函数

网友 2023-09-09 01:25 · 头闻号教育培训

最佳答案:

狄利克雷函数(英语:dirichlet function)是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。这是一个处处不连续的可测函数。

详情介绍

狄利克雷函数(英语:dirichlet function)是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。这是一个处处不连续的可测函数。

中文名
狄利克雷函数
外文名
Dirichlet function
分类类型
高等数学
特点
处处不连续

狄利克雷函数简介

狄利克雷函数是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。这是一个处处不连续的可测函数。

狄利克雷函数公式定义

实数域上的狄利克雷(Dirichlet)函数表示为:

(k,j为整数)也可以简单地表示分段函数的形式D(x)= 0(x是无理数)或1(x是有理数)

狄利克雷函数性质分析

基本性质

1、定义域为整个实数域R

2、值域为{0,1}

3、函数为偶函数

4、无法画出函数图像,但是它的函数图像客观存在

5、以任意正有理数为其周期,无最小正周期(由实数的连续统理论可知其无最小正周期)

分析性质

1、处处不连续

2、处处不可导

3、在任何区间内黎曼不可积

4、函数是可测函数

5、在单位区间上勒贝格可积,且勒贝格积分值为0(且任意区间<a,b>以及R上甚至任何R的可测子集上(区间不论开闭和是否有限)上的勒贝格积分值为0 )

对性质5的说明:虽然m(R/Q)=+∞,但在R/Q上有f(x)=0,符合可积条件(说明中Q为有理数集)。

狄利克雷函数函数周期

狄利克雷函数是周期函数,但是却没有最小正周期,它的周期是任意正有理数。因为不存在最小负有理数和正有理数,所以狄利克雷函数不存在最小正周期。

狄利克雷函数创始人介绍

狄里克雷(Dirichlet,Peter Gustav Lejeune,1805~1859),德国数学家。对数论、数学分析和数学物理有突出贡献,是解析数论的创始人之一。1805年2月13日生于迪伦,1859年5月5日卒于格丁根。中学时曾受教于物理学家G.S.欧姆;1822~1826年在巴黎求学,深受J.B.J.傅里叶的影响 。回国后先后在布雷斯劳大学、柏林军事学院和柏林大学任教27年,对德国数学发展产生巨大影响。1839年任柏林大学教授,1855年接任C.F.高斯在哥廷根大学的教授职位。

在分析学方面,他是最早倡导严格化方法的数学家之一。1837年他提出函数是x与y之间的一种对应关系的现代观点。

在数论方面,他是高斯思想的传播者和拓广者。1833年狄里克雷撰写了《数论讲义》,对高斯划时代的著作《算术研究》作了明晰的解释并有创见,使高斯的思想得以广泛传播。1837年,他构造了狄里克雷级数。1838~1839年,他得到确定二次型类数的公式。1846年,使用抽屉原理。阐明代数数域中单位数的阿贝尔群的结构。

在数学物理方面,他对椭球体产生的引力、球在不可压缩流体中的运动、由太阳系稳定性导出的一般稳定性等课题都有重要论著。1850年发表了有关位势理论的文章,论及著名的第一边界值问题,现称狄里克雷问题。

狄利克雷函数的出现.表示数学家“J对数学的理解发生了深刻的变化。数学的一些“人造”特征开始展现出来这种思想也标志着数学从研究“算”转变到了研究“概念、性质、结构”狄利克雷是数学史上第一位重视概念的人。并且是有意识地“以概念代替直觉”的人。在狄利克雷之前,数学家们主要研究具体函数进行具体计算,他们不大考虑抽象问题。但狄利克雷之后,事情逐渐变化了。人们开始考虑函数的各种性质,例如(函数的)对称性、增减性、连续性等。

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
打赏 0
更多相关文章

收藏

点赞