分享好友 天南地北首页 网站导航

全面的硬盘知识

网友发布 2023-08-23 13:11 · 头闻号仪器机械

硬盘,英文“hard-disk”简称HD 。是一种储存量巨大的设备,作用是储存计算机运行时需要的数据。

体现硬盘好坏的主要参数为传输率,其次的为转速、单片容量、寻道时间、缓存、噪音和S.M.A.R.T.

1956年IBM公司制造出世界上第一块硬盘350 RAMAC(Random Access Method of Accounting and Control),它的数据为:容量5MB、盘片直径为24英寸、盘片数为50片、重量上百公斤。盘片上有一层磁性物质,被轴带着旋转,有磁头移动着存储数据,实现了随机存取。

1970年磁盘诞生

1973年IBM公司制造出了一台640MB的硬盘、第一次采用“温彻斯特”技术,是现在硬盘的开端,因为磁头悬浮在盘片上方,所以镀磁的盘片在密封的硬盘里可以飞速的旋转,但有好几十公斤重。

1975年Soft-adjacent layer(软接近层)专利的MR磁头结构产生

1979年IBM发明了薄膜磁头,这意味着硬盘可以变的很小,速度可以更快,同体积下硬盘可以更大。

1979年IBM 3370诞生,它是第一款采用thin-film感应磁头及Run-Length-Limited(RLL)编码配置的硬盘,"2-7"RLL编码将能减小硬盘错误

1986年IBM 9332诞生,它是第一款使用更高效的1-7 run-length-limited(RLL)代码的硬盘。

1989年第一代MR磁头出现

1991年IBM磁阻MR(Magneto Resistive)磁头硬盘出现。带动了一个G的硬盘也出现。磁阻磁头对信号变化相当敏感,所以盘片的存储密度可以得到几十倍的提高。意味着硬盘的容量可以作的更大。意味着硬盘进入了G级时代。

1993年GMR(巨磁阻磁头技术)推出,这使硬盘的存储密度又上了一个台阶。

认识硬盘

硬盘是电脑中的重要部件,大家所安装的操作系统(如:Windows 9x、Windows 2k…)及所有的应用软件(如:Dreamwaver、Flash、Photoshop…)等都是位于硬盘中,或许你没感觉到吧!但硬盘确实非常重要,至少目前它还是我们存储数据的主要场所,那你对硬盘究竟了解多少了?可能你对她一窍不通,不过没关系,请见下文。

一、硬盘的历史与发展

从第一块硬盘RAMAC的产生到现在单碟容量高达15GB多的硬盘,硬盘也经历了几代的发展,下面就介绍一下其历史及发展。

1.1956年9月,IBM的一个工程小组向世界展示了第一台磁盘存储系统IBM 350 RAMAC(Random Access Method of Accounting and Control),其磁头可以直接移动到盘片上的任何一块存储区域,从而成功地实现了随机存储,这套系统的总容量只有5MB,共使用了50个直径为24英寸的磁盘,这些盘片表面涂有一层磁性物质,它们被叠起来固定在一起,绕着同一个轴旋转。此款RAMAC在那时主要用于飞机预约、自动银行、医学诊断及太空领域内。

2.1968年IBM公司首次提出“温彻斯特/Winchester”技术,探讨对硬盘技术做重大改造的可能性。“温彻斯特”技术的精隋是:“密封、固定并高速旋转的镀磁盘片,磁头沿盘片径向移动,磁头悬浮在高速转动的盘片上方,而不与盘片直接接触”,这也是现代绝大多数硬盘的原型。

3.1973年IBM公司制造出第一台采用“温彻期特”技术的硬盘,从此硬盘技术的发展有了正确的结构基础。

4.1979年,IBM再次发明了薄膜磁头,为进一步减小硬盘体积、增大容量、提高读写速度提供了可能。

5.80年代末期IBM对硬盘发展的又一项重大贡献,即发明了MR(Magneto Resistive)磁阻,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度能够比以往20MB每英寸提高了数十倍。

6.1991年IBM生产的3.5英寸的硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此硬盘容量开始进入了GB数量级。

7.1999年9月7日,Maxtor宣布了首块单碟容量高达10.2GB的ATA硬盘,从而把硬盘的容量引入了一个新里程碑。

8.2000年2月23日,希捷发布了转速高达15,000RPM的Cheetah X15系列硬盘,其平均寻道时间只有3.9ms,这可算是目前世界上最快的硬盘了,同时它也是到目前为止转速最高的硬盘;其性能相当于阅读一整部Shakespeare只花.15秒。此系列产品的内部数据传输率高达48MB/s,数据缓存为4~16MB,支持Ultra160/m SCSI及Fibre Channel(光纤通道) ,这将硬盘外部数据传输率提高到了160MB~200MB/s。总得来说,希捷的此款("捷豹")Cheetah X15系列将硬盘的性能提高到了一个新的里程碑。

9.2000年3月16日,硬盘领域又有新突破,第一款“玻璃硬盘”问世,这就是IBM推出的Deskstar 75GXP及Deskstar 40GV,此两款硬盘均使用玻璃取代传统的铝作为盘片材料,这能为硬盘带来更大的平滑性及更高的坚固性。另外玻璃材料在高转速时具有更高的稳定性。此外Deskstar 75GXP系列产品的最高容量达75GB,这是目前最大容量的硬盘,而Deskstar 40GV的数据存储密度则高达14.3 十亿数据位/每平方英寸,这再次涮新数据存储密度世界记录。

二、硬盘分类

目前的硬盘产品内部盘片有:5.25,3.5,2.5和1.8英寸(后两种常用于笔记本及部分袖珍精密仪器中,现在台式机中常用3.5英寸的盘片);如果按硬盘与电脑之间的数据接口,可分为两大类:IDE接口及SCSI接口硬盘两大阵营。

三、技术规格

目前台式机中硬盘的外形差不了多少,在技术规格上有几项重要的指标:

1.平均寻道时间(average seek time),指硬盘磁头移动到数据所在磁道时所用的时间,单位为毫秒(ms)。注意它与平均访问时间的差别,平均寻道时间当然是越小越好,现在选购硬盘时应该选择平均寻道时间低于9ms的产品。

2.平均潜伏期(average latency),指当磁头移动到数据所在的磁道后,然后等待所要的数据块继续转动(半圈或多些、少些)到磁头下的时间,单位为毫秒(ms)。

3.道至道时间(single track seek),指磁头从一磁道转移至另一磁道的时间,单位为毫秒(ms)。

4.全程访问时间(max full seek),指磁头开始移动直到最后找到所需要的数据块所用的全部时间,单位为毫秒(ms)。

5.平均访问时间(average access),指磁头找到指定数据的平均时间,单位为毫秒。通常是平均寻道时间和平均潜伏时间之和。注意:现在不少硬盘广告之中所说的平均访问时间大部分都是用平均寻道时间所代替的。

6.最大内部数据传输率(internal data transfer rate),也叫持续数据传输率(sustained transfer rate),单位Mb/S(注意与MB/S之间的差别)。它指磁头至硬盘缓存间的最大数据传输率,一般取决于硬盘的盘片转速和盘片数据线密度(指同一磁道上的数据间隔度)。注意,在这项指标中常常使用Mb/S或Mbps为单位,这是兆位/秒的意思,如果需要转换成MB/S(兆字节/秒),就必须将Mbps数据除以8(一字节8位数)。例如,WD36400硬盘给出的最大内部数据传输率为131Mbps,但如果按MB/S计算就只有16.37MB/s(131/8)。

7.外部数据传输率:通称突发数据传输率(burst data transfer rate),指从硬盘缓冲区读取数据的速率,在广告或硬盘特性表中常以数据接口速率代替,单位为MB/S。目前主流硬盘普通采用的是Ultra ATA/66,它的最大外部数据率即为66.7MB/s,而在SCSI硬盘中,采用最新的Ultra 160/m SCSI接口标准,其数据传输率可达160MB/s,采用Fibra Channel(光纤通道),最大外部数据传输将可达200MB/s。在广告中我们有时能看到说双Ultra 160/m SCSI的接口,这理论上将最大外部数据传输率提高到了320MB/s,但目前好像还没有结合有此接口的产品推出。

8.主轴转速:是指硬盘内主轴的转动速度,目前ATA(IDE)硬盘的主轴转速一般为5400~7200rpm,主流硬盘的转速为7200RPM,至于SCSI硬盘的主轴转速可达一般为7200~10,000RPM,而最高转速的SCSI硬盘转速高达15,000RPM(即希捷“捷豹X15”系列硬盘)。

9.数据缓存:指在硬盘内部的高速存储器:目前硬盘的高速缓存一般为512KB~2MB,目前主流ATA硬盘的数据缓存应该为2MB,而在SCSI硬盘中最高的数据缓存现在已经达到了16MB。对于大数据缓存的硬盘在存取零散文件时具有很大的优势。

10.硬盘表面温度:它是指硬盘工作时产生的温度使硬盘密封壳温度上升情况。这项指标厂家并不提供,一般只能在各种媒体的测试数据中看到。硬盘工作时产生的温度过高将影响薄膜式磁头(包括GMR磁头)的数据读取灵敏度,因此硬盘工作表面温度较低的硬盘有更好的数据读、写稳定性。如果对于高转速的SCSI硬盘一般来说应该加一个硬盘冷却装置,这样硬盘的工作稳定性才能得到保障。

11.MTBF(连续无故障时间):它指硬盘从开始运行到出现故障的最长时间,单位是小时。一般硬盘的MTBF至少在30000或40000小时。这项指标在一般的产品广告或常见的技术特性表中并不提供,需要时可专门上网到具体生产该款硬盘的公司网址中查询。

四、接口标准

ATA接口,这是目前台式机硬盘中普通采用的接口类型。

ST-506/412接口:

这是希捷开发的一种硬盘接口,首先使用这种接口的硬盘为希捷的ST-506及ST-412。ST-506接口使用起来相当简便,它不需要任何特殊的电缆及接头,但是它支持的传输速度很低,因此到了1987年左右这种接口就基本上被淘汰了,采用该接口的老硬盘容量多数都低于200MB。早期IBM PC/XT和PC/AT机器使用的硬盘就是ST-506/412硬盘或称MFM硬盘,MFM(Modified Frequency Modulation)是指一种编码方案 。

ESDI接口:

即(Enhanced Small Drive Interface)接口,它是迈拓公司于1983年开发的。其特点是将编解码器放在硬盘本身之中,而不是在控制卡上,理论传输速度是前面所述的ST-506的2…4倍,一般可达到10Mbps。但其成本较高,与后来产生的IDE接口相比无优势可言,因此在九十年代后就补淘汰了

IDE及EIDE接口:

IDE(Integrated Drive Electronics)的本意实际上是指把控制器与盘体集成在一起的硬盘驱动器,我们常说的IDE接口,也叫ATA(Advanced Technology Attachment)接口,现在PC机使用的硬盘大多数都是IDE兼容的,只需用一根电缆将它们与主板或接口卡连起来就可以了。 把盘体与控制器集成在一起的做法减少了硬盘接口的电缆数目与长度,数据传输的可靠性得到了增强,硬盘制造起来变得更容易,因为厂商不需要再担心自己的硬盘是否与其它厂商生产的控制器兼容,对用户而言,硬盘安装起来也更为方便。

ATA-1(IDE):

ATA是最早的IDE标准的正式名称,IDE实际上是指连在硬盘接口的硬盘本身。ATA在主板上有一个插口,支持一个主设备和一个从设备,每个设备的最大容量为504MB,ATA最早支持的PIO-0模式(Programmed I/O-0)只有3.3MB/s,而ATA-1一共规定了3种PIO模式和4种DMA模式(没有得到实际应用),要升级为ATA-2,你需要安装一个EIDE适配卡。

ATA-2(EIDE Enhanced IDE/Fast ATA):

这是对ATA-1的扩展,它增加了2种PIO和2种DMA模式,把最高传输率提高到了16.7MB/s,同时引进了LBA地址转换方式,突破了老BIOS固有504MB的限制,支持最高可达8.1GB的硬盘。如你的电脑支持ATA-2,则可以在CMOS设置中找到(LBA,LogicalBlock Address)或(CHS,Cylinder,Head,Sector)的设置。其两个插口分别可以连接一个主设备和一个从设置,从而可以支持四个设备,两个插口也分为主插口和从插口。通常可将最快的硬盘和CD—ROM放置在主插口上,而将次要一些的设备放在从插口上,这种放置方式对于486及早期的Pentium电脑是必要的,这样可以使主插口连在快速的PCI总线上,而从插口连在较慢的ISA总线上。

ATA-3(FastATA-2):

这个版本支持PIO-4,没有增加更高速度的工作模式(即仍为16.7MB/s),但引入了简单的密码保护的安全方案,对电源管理方案进行了修改,引入了S.M.A.R.T(Self-Monitoring,Analysis and Reporting Technology,自监测、分析和报告技术)

ATA-4(UltraATA、UltraDMA、UltraDMA/33、UltraDMA/66):

这个新标准将PIO-4下的最大数据传输率提高了一倍,达到33MB/s,或更高的66MB/s。它还在总线占用上引入了新的技术,使用PC的DMA通道减少了CPU的处理负荷。要使用Ultra-ATA,需要一个空闲的PCI扩展槽,如果将UltraATA硬盘卡插在ISA扩展槽上,则该设备不可能达到其最大传输率,因为ISA总线的最大数据传输率只有8MB/s 。其中的Ultra ATA/66(即Ultra DMA/66)是目前主流桌面硬盘采用的接口类型,其支持最大外部数据传输率为66.7MB/s。

Serial ATA:

新的Serial ATA(即串行ATA),是英特尔公司在今年IDF(Intel Developer Forum,英特尔开发者论坛) 发布的将于下一代外设产品中采用的接口类型,就如其名所示,它以连续串行的方式传送资料,在同一时间点内只会有1位数据传输,此做法能减小接口的针脚数目,用四个针就完成了所有的工作(第1针发出、2针接收、3针供电、4针地线)。这样做法能降低电力消耗,减小发热量。最新的硬盘接口类型ATA-100就是Serial ATA是初始规格,它支持的最大外部数据传输率达100MB/s,上面介绍的那两款IBM Deskstar 75GXP及Deskstar 40GV就是第一次采用此ATA-100接口类型的产品。在2001年第二季度将推出Serial ATA 1x标准的产品,它能提高150MB/s的数据传输率。对于Serial ATA接口,一台电脑同时挂接两个硬盘就没有主、从盘之分了,各设备对电脑主机来说,都是Master,这样我们可省了不少跳线功夫。

SCSI接口:

SCSI就是指Small Computer System Interface(小型计算机系统接口),它最早研制于1979,原是为小型机的研制出的一种接口技术,但随着电脑技术的发展,现在它被完全移植到了普通PC上。现在的SCSI可以划分为SCSI-1和SCSI-2(SCSI Wide与SCSI Wind Fast),最新的为SCSI-3,不过SCSI-2是目前最流行的SCSI版本。 SCSI广泛应用于如:硬盘、光驱、ZIP、MO、扫描仪、磁带机、JAZ、打印机、光盘刻录机等设备上。它的优点非常多主要表现为以下几点:

1、适应面广; 使用SCSI,你所接的设备就可以超过15个,而所有这些设备只占用一个IRQ,这就可以避免IDE最大外挂15个外设的限制。

2、多任务;不像IDE,SCSI允许对一个设备传输数据的同时,另一个设备对其进行数据查找。这将在多任务操作系统如Linux、Windows NT中获得更高的性能。

3、宽带宽;在理论上,最快的SCSI总线有160MB/s的带宽,即Ultra 160/s SCSI;这意味着你的硬盘传输率最高将达160MB/s(当然这是理论上的,实际应用中可能会低一点)。

4、少CPU占用率

从最早的SCSI到现在Ultra 160/m SCSI,SCSI接口具有如下几个发展阶段

1、SCSI-1 —最早SCSI是于1979年由美国的Shugart公司(Seagate希捷公司的前身)制订的,并于1986年获得了ANSI(美国标准协会)承认的SASI(Shugart Associates System Interface施加特联合系统接口) ,这就是我们现在所指的SCSI -1,它的特点是,支持同步和异步SCSI外围设备;支持7台8位的外围设备最大数据传输速度为5MB/S;支持WORM外围设备。

2、SCSI-2 —90年代初(具体是1992年),SCSI发展到了SCSI-2,当时的SCSI-2 产品(通称为Fast SCSI)是能过提高同步传输时的频率使数据传输率提高为10MB/S,原本为8位的并行数据传输称为:Narrow SCSI;后来出现了16位的并行数据传输的WideSCSI,将其数据传输率提高到了20MB/S 。

3、SCSI-3 —1995年推出了SCSI-3,其俗称Ultra SCSI,全称为SCSI-3 Fast-20 Parallel Interface(数据传输率为20M/S)它采用了同步传输时钟频率提高到20MHZ以提高数据传输的技术,因此使用了16位传输的Wide模式时,数据传输即可达到40MB/s。其允许接口电缆的最大长度为1.5米。

4、1997年推出了Ultra 2 SCSI(Fast-40),其采用了LVD(Low Voltage Differential,低电平微分)传输模式,16位的Ultra2SCSI(LVD)接口的最高传输速率可达80MB/S,允许接口电缆的最长为12米,大大增加了设备的灵活性。

5、1998年9月更高的数据传输率的Ultra160/m SCSI(Wide下的Fast-80)规格正式公布,其最高数据传输率为160MB/s,这将给电脑系统带来更高的系统性能。

现有最流行的串行硬盘技术

随着INTEL的915平台的发布,最新的ICH6-M也进入了我们的视野。而ICH6除了在一些电源管理特性方面有所增强外,也正式引入了SATA(串行ATA,以下简称SATA)和PCI-E概念。对于笔记本来说,从它诞生的那天起就一直使用着PATA(并行ATA,以下简称PATA)来连接硬盘,SATA的出现无疑是一项硬盘接口的革命。而如今随着INTEL的积极推动,笔记本也开始迈入SATA的阵营。

关于SATA的优势,笔者相信诸位也都有了解。确实,比起PATA,SATA有着很多不可比拟的优势,而笔者将在本文中透过技术细节来多其进行分析。相信您读完本文后会对SATA有着更深入的了解。另外由于本文主要针对笔记本和台式机,所以诸如RAID等技术不在本文讨论范围之内。

串行通信和并行通信

再进行详细的介绍之前,我们先了解一下串行通信和并行通信的特点。

一般来说,串行通信一般由二根信号线和一根地线就可完成互相的信息的传送。如下图,我们看到设备A和设备B之间的信号交换仅用了两根信号线和一根地线就完成了。这样,在一个时钟内,二个bit的数据就会被传输(每个方向一个bit,全双工),如果能时钟频率足够高,那么数据的传输速度就会足够快。

如果为了节省成本,我们也可以只用一根信号线和一根地线连接。这样在一个时钟内只有一个bit被传输(半双工),我们也同样可以提高时钟频率来提升其速度。

而并行通信在本质上是和串行通信一样的。唯一的区别是并行通信依靠多条数据线在一个时钟周期里传送更多的bit。下图中,数据线已经不是一条或者是两条,而是多条。我们很容易知道,如果有8根数据线的话,在同一时钟周期内传送的的数据量是8bit。如果我们的数据线足够多的话,比如PCI总线,那一个周期内就可以传送32bit的数据。

在这里,笔者想提醒各位读者,对于一款产品来说,用最低的成本来满足带宽的需要,那就是成功的设计,而不会在意你是串行通信还是并行通信,也不会管你的传输技术是先进还是落后。

PATA接口的速度

我们知道,ATA-33的速度为33MB/S,ATA-100的速度是100MB/S。那这个速度是如何计算出来的呢?

首先,我们需要知道总线上的时钟频率,比如ATA-100是25MHz,PATA的并行数据线有16根,一次能传送16bit的数据。而ATA-66以上的规范为了降低总线本身的频率,PATA被设计成在时钟的上下沿都能传输数据(类似DDR的原理),使得在一个时钟周期内能传送32bit。

这样,我们很容易得出ATA-100的速度为:25M*16bit*2=800Mbps=100MByte/s。

PATA的局限性

在相同频率下,并行总线优于串行总线。随着当前硬盘的数据传输率越来越高,传统的并行ATA接口日益逐渐暴露出一些设计上的缺陷,其中最致命的莫过于并行线路的信号干扰问题。

那各信号线之间是如何干扰的呢?

1,首先是信号的反射现象。从南桥发出的PATA信号,通过扁长的信号线到达硬盘(在笔记本上对应的也有从南桥引出PATA接口,一直布线到硬盘的接口)。学过微波通信的读者肯定知道,信号在到达PATA硬盘后不可避免的会发生反弹,而反弹的信号必将叠加到当前正在被传输的信号上,导致传输中数据的完整性被破坏,引起接受端误判。

所以在实际的设计中,都必须要设计相应的电路来保证信号的完整性。

我们看到,从南桥发出的PATA信号一般都需要经过一个排阻才发送到PATA的设备。我们必须加上至少30个电阻(除了16根数据线,还有一些控制信号)才能有效的防止信号的反弹。而在硬盘内部,硬盘厂商会在里面接上终端电阻以防止引号反弹。这不仅对成本有所上升,也对PCB的布局也造成了困扰。

当然,信号反弹在任何高速电路里都会发生,在SATA里我们也会看到终端电阻,但因为SATA的数据线比PATA少很多,并且采用了差分信号传输,所以这个问题并不突出。

2,其次是信号的偏移问题

理论上,并行总线的数据线的长度应该是一致的。而在实际上,这点很难得到保证。信号线长度的不一致性会导致某个信号过快/过慢到达接受端,导致逻辑误判。不仅如此,导致信号延迟的原因还有很多,比如线路板上的分布电容、信号线在高频时产生的感抗等都会引起信号的延迟。

如图,在左侧南桥端我们发送的数据为[1,1,1,0],在发送到硬盘的过程中,第四个信号由于某种原因出现延迟,在判断时刻还没到达接受端。这样,接受端判断接受到的信号为[1,1,1,1],出现错误。由此也可看出,并行数据线越多,出现错误的概率也越大。

下图是SONY Z1的硬盘转接线,我们看到,设计师做了不少蛇行走线以满足PATA数据线的长度一致性要求。

我们可以很容易想像,信号的时钟越快,被判断信号判断的时间就越短,出现误判的可能性就越大。在较慢的总线上(上),允许数据信号和判断信号的时间误差为a,而在高速的总线上(下),允许误差为b。速度越快,允许的误差越小。这也是PATA的总线频率提升的局限性,而总线频率直接影响着硬盘传输速度。。。

3,还有是信号线间的干扰(串音干扰)

这种干扰几乎存在与任何电路。和信号偏移一样,串音干扰也是并行通信的通病。由于并行通信需要多条信号线并行走线(以满足长度、分布电容等参数的一致性),而串音干扰就是在这时候导致的。由于信号线在传输数据的过程中不停的以0,1间变换,导致其周边的磁场变化甚快。通过法拉第定律我们知道,磁场变化越快,切割磁力线的导线上的电压越大。这个电压将导致信号的变形,信号频率越高,干扰愈加严重,直至完全无法工作。串音干扰可以说这是对并行的PATA线路影响最大的不利因素,并且大大限制了线路的长度。

硬盘的恢复主要是靠备份,还有一些比较专业的恢复技术就是要专业学习的了.不过我不专业,现在最常用的就是GHOST,它可以备份任何一个盘付,并生成一个备份文件必要的时候可以用来恢复数据

现在市场上的主要几款硬盘就是迈托,西部数据(WD),希捷(ST),三星,东之,松下,还有最新的那个易拓保密硬盘

问或不能被正确读写的扇区。一般表现为:高级格式化后发现有“坏簇(Bad Clusters);用SCANDISK等工具检查发现有“B”标记;或用某些检测工具发现有“扇区错误提示”等。

一般每个扇区可以记录512字节的数据,如果其中任何一个字节不正常,该扇区就属于缺陷扇区。每个扇区除了记录512字节的数据外,另外还记录有一些信息:标志信息、校验码、地址信息等,其中任何一部分信息不正常都导致该扇区出现缺陷。

多数专业检测软件在检测过程中发现缺陷时,都有类似的错误信息提示,常见的扇区缺陷主要有几种情况:

①校验错误(ECC uncorrectable errors,又称ECC错误)。系统每次在往扇区中写数据的同时,都根据这些数据经过一定的算法运算生成一个校验码(ECC=Error Correction Code),并将这个校验码记录在该扇区的信息区内。以后从这个扇区读取数据时,都会同时读取其校检码,并对数据重新运算以检查结果是否与校检码一致。如果一致,则认为这个扇区正常,存放的数据正确有效;如果不一致,则认为该扇区出错,这就是校验错误。这是硬盘最主要的缺陷类型。导致这种缺陷的原因主要有:磁盘表面磁介质损伤、硬盘写功能不正常、校验码的算法差异。

②IDNF错误(sector ID not found),即扇区标志出错,造成系统在需要读写时找不到相应的扇区。造成这个错误的原因可能是系统参数错乱,导致内部地址转换错乱,系统找不到指定扇区;也有可能是某个扇区记录的标志信息出错导致系统无法正确辨别扇区。

③AMNF错误(Address Mark Not Found),即地址信息出错。一般是由于某个扇区记录的地址信息出错,系统在对它访问时发现其地址信息与系统编排的信息不一致。

④坏块标记错误(Bad block mark)。某些软件或病毒程序可以在部分扇区强行写上坏块标记,让系统不使用这些扇区。这种情况严格来说不一定是硬盘本身的缺陷,但想清除这些坏块标记却不容易。

2.磁道伺服缺陷

现在的硬盘大多采用嵌入式伺服,硬盘中每个正常的物理磁道都嵌入有一段或几段信息作为伺服信息,以便磁头在寻道时能准确定位及辨别正确编号的物理磁道。如果某个物理磁道的伺服信息受损,该物理磁道就可能无法被访问。这就是“磁道伺服缺陷”。一般表现为,分区过程非正常中断;格式化过程无法完成;用检测工具检测时,中途退出或死机,等等。

3.磁头组件缺陷

指硬盘中磁头组件的某部分不正常,造成部分或全部物理磁头无法正常读写的情况。包括磁头磨损、磁头接触面脏、磁头摆臂变形、音圈受损、磁铁移位等。一般表现为通电后,磁头动作发出的声音明显不正常,硬盘无法被系统BIOS检测到;无法分区格式化;格式化后发现从前到后都分布有大量的坏簇,等等。

4.系统信息错乱

每个硬盘内部都有一个系统保留区(service area),里面分成若干模块保存有许多参数和程序。硬盘在通电自检时,要调用其中大部分程序和参数。如果能读出那些程序和参数模块,而且校验正常的话,硬盘就进入准备状态。如果某些模块读不出或校验不正常,则该硬盘就无法进入准备状态。一般表现为,PC系统的BIOS无法检测到该硬盘或检测到该硬盘却无法对它进行读写操作。如某些系列硬盘的常见问题:美钻二代系列硬盘通电后,磁头响一声,马达停转;Fujitsu MPG系列在通电后,磁头正常寻道,但BIOS却检测不到;火球系列,系统能正常认出型号,却不能分区格式化;Western Digital的EB、BB系列,能被系统检测到,却不能分区格式化,等等。

5.电子线路缺陷

指硬盘的电子线路板中部分线路断路或短路,某些电气元件或IC芯片损坏等。有部分可以通过观察线路板发现缺陷所在,有些则要通过仪器测量后才能确认缺陷部位。一般表现为硬盘在通电后不能正常起转,或者起转后磁头寻道不正常,等等。

6.综合性能缺陷

有些硬盘在使用过程中部分芯片特性改变;或者有些硬盘受震动后物理结构产生微小变化(如马达主轴受损);或者有些硬盘在设计上存在缺陷……最终导致硬盘稳定性差,或部分性能达不到标准要求。一般表现为,工作时噪音明显增大;读写速度明显太慢;同一系列的硬盘大量出现类似故障;某种故障时有时无等等。

二、厂家处理缺陷的方式

厂家如何保证新硬盘不会被检测到缺陷呢?返修的硬盘又如何处理缺陷呢?首先,让我们来认识硬盘工厂的一些基本处理流程:

1.在生产线上装配硬盘的硬件部分,用特别设备往盘片写入伺服信号(Servo write)。

2.将硬盘的系统保留区(service area)格式化,并向系统保留区写入程序模块和参数模块。系统保留区一般位于硬盘0物理面的最前面几十个物理磁道。写入的程序模块一般用于硬盘内部管理,如低级格式化程序、加密解密程序、自监控程序、自动修复程序等等。写入的参数多达近百项:如型号、系列号、容量、口令、生产厂家与生产日期、配件类型、区域分配表、缺陷表、出错记录、使用时间记录、S.M.A.R.T表等等,数据量从几百KB到几MB不等。有时参数一经写入就不再改变,如型号、系列号、生产时间等;而有些参数则可以在使用过程中由内部管理程序自动修改,如出错记录、使用时间记录、S.M.A.R.T记录等。也有些专业的维修人员可以借助专业的工具软件,随意读取、修改写入硬盘中的程序模块和参数模块。

3.将所使用的盘片表面按物理地址全面扫描,检查出所有的缺陷磁道和缺陷扇区,并将这些缺陷磁道和缺陷扇区按实际物理地址记录在永久缺陷列表(P-list:Permanent defect list)中。这个扫描过程非常严格,能把不稳定不可靠的磁道和扇区也检查出来,视同缺陷一并处理。现在的硬盘密度极高,盘片生产过程再精密也很难完全避免缺陷磁道或缺陷扇区。一般新硬盘的P-list中都有少则数十,多则上万个缺陷记录。P-list是保留在系统保留区中,一般用户是无法查看或修改的。有些专业的维修人员借助专业的工具软件,可以查看或修改大部分硬盘中的P-list。

4.系统调用内部低级格式化程序,根据相应的内部参数进行内部低级格式化。在内部低级格式化过程中,对所有的磁道和扇区进行编号、信息重写、清零等工作。在编号时,采用跳过(skipped)的方法忽略掉记录在P-list中的缺陷磁道和缺陷扇区,保证以后用户不会也不能使用到那些缺陷磁道和缺陷扇区。因此,新硬盘在出售时是无法被检测到缺陷的。如果是返修的硬盘,一般就在厂家特定的维修部门进行检测维修。

什么是硬盘的磁道和扇区?磁道是磁盘一个面上的单个数据存储圆圈。如果将磁道作为一个存储单元,从数据管理效率来看实在是太低了,因此,磁道被分成若干编上号的区域,称之为扇区。这些扇区代表了磁道的分段(如图)。在PC系统中,通过标准格式化的程序产生的扇区容量都为512字节。这里大家需注意的是“扇区”与“簇”的关系,“簇”是操作系统在读或写一个文件时能处理的最小磁盘单元,一个簇等于一个或多个扇区。

硬盘各部位常见故障汇总

1)硬盘的供电:硬盘的供电取自主机的开关电源,四个接线柱的电压分别为:红色为正5V,黑色为地线,**为正12V,通过线性电源变换电路,变换为硬盘正常工作的各种电压。硬盘的供电电路如果出现问题,会直接导致硬盘不能工作。故障现象往往表现为不通电、硬盘检测不到、盘片不转、磁头不寻道等。供电电路常出问题的部位是:插座的接线柱、滤波电容、二极管、三极管、场效应管、电感、保险电阻等。

2)接口:接口是硬盘与计算机之间传输数据的通路,接口电路如出现故障可能会导致硬盘检测不到、乱码、参数误认等现象。接口电路常出故障的部位是接口芯片或与之匹配的晶振坏、接口插针断或虚焊或脏污、接口排阻损坏,部分硬盘的接口塑料损坏导致厂家不予保修。

3)缓存:用于加快硬盘数据传输速度,如出现问题可能会导致硬盘不被识别、乱码、进入操作系统后异常死机等现象。

4)BIOS:用于保存与硬盘容量、接口信息等,硬盘所有的工作流程都与BIOS程序相关,通断电瞬间可能会导致BIOS程序丢失或紊乱。BIOS不正常会导致硬盘误认、不能识别等各种各样的故障现象。

5)磁头芯片:贴装在磁头组件上,用于放大磁头信号、磁头逻辑分配、处理音圈电机反馈信号等,该芯片出现问题可能会出现磁头不能正确寻道、数据不能写入盘片、不能识别硬盘、异响等故障现象。

6) 前置信号处理器:用于加工整理磁头芯片传来的数据信号,该芯片如出现问题可能会出现不能正确识别硬盘的故障现象。

7)数字信号处理器:用于处理前置信号处理器传过来的数据信号,并对该信号解码或接收计算机传过来的数据信号,并对该信号进行编码。

8)电机驱动芯片:用于驱动硬盘主轴电机和音圈电机。现在的硬盘由于转速太高导致该芯片发热量太大而损坏,据不完全统计,70% 左右的硬盘电路路障是由该芯片损坏引起。

9)盘片:用于存储硬盘数据,轻微划伤时可通过软件按一定的算法解码纠错,严重划伤时,数据不可恢复。

10)主轴电机:用于带动盘片高速旋转,现在的硬盘大多使用液态轴承马达,精度极高,剧烈碰撞后可能会使间隙变大,读取数据变得困难、异响或根本检测不到硬盘。该故障现象需用专用设备才能读取里面的数据。

11)磁头:用于读取或写入硬盘数据,受到剧烈碰撞时易于损坏,导致不认硬盘。硬盘受到碰撞后受损可能性更大的是磁头。

12)音圈电机:闭环控制电机,用于把磁头准确定位在磁道上。该电机较少损坏。

13)定位卡子:用于使磁头停留在启停区,IBM等系列的硬盘的卡子易错位,导致磁头不能正常寻道。在无开盘维修条件的情况下,可按一定的角度适当敲击硬盘,使卡子回复到正确位置。

硬盘基础知识

一、容量

容量恐怕是最能体现硬盘发展速度的了,从当初IBM发布世界上第一款5MB容量的硬盘到现在,硬盘的容量已经从几十、几百MB增加到了上百GB,硬盘容量的增加主要通过增加单碟容量和增加盘片数来实现。单碟容量就是硬盘盘体内每张盘片的最大容量,每块硬盘内部有若干张碟片,所有碟片的容量之和就是硬盘的总容量。比如希捷酷鱼Ⅳ 60GB硬盘,其单碟容量为40GB,由两张碟片组成,其中一张为40GB(双面)、另一张为20GB(单面)。

1、 硬盘的发展突破了多次容量限制

单碟容量的增长可以带来三个好处:第一是硬盘容量的提高。由于硬盘盘体内一般只能容纳4到5张碟片,所以硬盘总容量的增长只能通过增加单碟容量来实现;二是传输速度的增加,因为盘片的表面积是一定的,那么只有增加单位面积内数据的存储密度。这样一来,磁头在通过相同的距离时就能读取更多的数据,对于连续存储的数据来说,性能提升非常明显;三是成本下降。举例来讲,同样是40GB的硬盘,若单碟容量为10GB,那么需要4张盘片和8个磁头,要是单碟容量上升为20GB,那么需要2张盘片和4个磁头,对于单碟容量达40GB的硬盘来说,只要1张盘片和2个磁头就够了,能够节约很多成本。目前硬盘单碟容量正在飞速增加,但硬盘的总容量增长速度却没有这么快,这正是增加单碟容量并减少盘片数的结果,出于成本和价格两方面的考虑,两张盘片是个比较理想的平衡点。

不过单碟容量的飞速增加也带来了两个问题:首先是AMR(Anisotropic Magneto Resistive,各项异性磁阻)的薄膜的电阻变化量有一定限度,所以AMR磁头的灵敏度也存在极限—— 476Mbit~794Mbit/平方厘米;其次是硬盘的总容量受到28bit寄存器的限制,最多只能达到137.4GB。

2、GMR巨磁阻磁头

GMR(Giant Magneto Resistive,巨磁阻)磁头与AMR磁头一样,核心是一片特殊金属材料,其电阻随磁场的变化而变化。磁阻元件连接着一个十分敏感的放大器,可以测出微小的电阻变化,通过这种微小的变化就可以读出盘片上记录的数据。只不过GMR磁头使用了磁阻效应更好的材料和多层薄膜结构,比AMR磁头更为敏感,相同的磁场变化能引起更大的电阻值变化,从而实现更高的存储密度,GMR磁头的存储密度能够达到1.55Gbit~6.2Gbit/平方厘米以上。

3、Big Drives

硬盘的容量及扇区地址与三个方面息息相关:柱面数(Cylinder)、磁头数(Head)和扇区数(Sector),统称CHS。这三个数值的寄存器位数决定了硬盘的最大容量,目前这3个寄存器的位数分别为16bit、8bit、4bit,总计28bit。这样即使是通过LBA寻址方式,也只能访问268,435,455个扇区,按每扇区512字节计算,总容量约为137.4GB。鉴于此种状况,迈拓(Maxtor)提出了一种叫做Big Drives的解决方案,为CHS的每个数值分配了一个16bit的寄存器,一共48bit,这样算来通过LBA寻址方式就能访问281,474,976,710,655个扇区,最大容量高达144PetaByte,合144,000,000GB。

二、转速

转速是指硬盘内盘片转动的速度,单位为RPM(Round Per Minute,转/分钟),有时也简写成“转”。目前市场上IDE硬盘的转速主要分5400RPM和7200RPM两种,当初昆腾曾经推出过两个转速分别为4400RPM和4500RPM的硬盘系列——lct15和lct20,但由于价格及发热量并没有比5400RPM硬盘降低多少,而性能却有所下降,因此没能得到市场的广泛认同。

从测试及实际应用等各个方面来看,5400RPM硬盘和7200RPM硬盘之间确实存在着一定性能差距,不过7200RPM硬盘的发热量、噪音以及性价比等方面均比5400RPM硬盘略逊一筹,而且现在的应用软件对于硬盘速度的要求并不很高,5400RPM硬盘完全能够满足绝大多数普通家庭的需要。况且随着单碟容量大幅度提升,转速对硬盘整体性能的影响已经不像以前那么大了,当初希捷U6系列硬盘推出之时,高达40GB的单碟容量使它在持续传输率等方面甚至比部分7200RPM的硬盘还要强。所以今后IDE硬盘的转速仍然会保持在现在的水平并维持一段时间。

三、缓存

缓存(Cache Buffer)的大小也是影响硬盘性能的重要因素之一。硬盘的缓存主要起三种作用:一是预读取。当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬盘上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速度远远高于磁头读写的速度,所以能够达到明显改善性能的目的;二是对写入动作进行缓存。当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患——如果数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地;第三个作用就是临时存储最近访问过的数据。有时候,某些数据是会经常需要访问的,硬盘内部的缓存会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。

硬盘缓存的大小决定了可存放数据的多少,但并不是说缓存越大性能就一定越好。目前主流硬盘的缓存多在2MB左右,没有配备更大容量的缓存主要是出于缓存算法的考虑,更大容量的缓存需要更有效率的算法,否则性能不会有多大提升。当然更大的缓存也是未来硬盘的一个发展方向,西部数据(WD)就推出了一款缓存容量高达8MB的硬盘产品,其性能表现请参考后面的评测部分文章,这里就不再赘述了。

硬盘的型号

硬盘的型号是很多消费者难以把握的,部分JS简单地更换包装盒就能将产品卖到更高的价钱。更为棘手的是,诸如转速、缓存容量、接口等技术指标在使用时很难立即感受出来,因此很多上当受骗的消费者还被蒙在鼓里。其实,只要我们掌握硬盘编号的规则,分辨不同产品是很容易的。

1. Seagate

Seagate硬盘的编号比较简单,而且提供的信息很少。以编号为ST340016A的酷鱼IV 40GB硬盘为例,其编号可以分解为ST-X-XXXXX-X,意义如下:

ST代表希捷硬盘;

3代表是3.5英寸硬盘;

40016代表容量为40016MB;

A代表为ATA接口,如果是Serial-ATA接口,那么此处为AS。

很明显,我们无法通过编号来区别Seagate硬盘的具体类型。对此,我们唯一的办法也只能通过产品表面的标识进行辨认,好在Seagate的标识还是相当清楚。

2. Maxtor

相对而言,Maxtor的硬盘编号就要清晰得多。其编号由4部分组成:产品型号+硬盘容量+接口类型+磁头数。以编号为6Y080L1的金钻九代为例,我们将其分解为XX-XXX-X-X,意义如下:

6Y:表示产品型号。4D/4K/4G代表星钻三代,4R代表星钻四代,2B代表美钻二代,6L代表金钻七代,6E代表金钻八代,6Y代表金钻九代;

080:表示硬盘容量,单位是GB;

L:表示缓存容量、接口及主轴马达类型。H代表ATA100接口、2MB缓存,J代表 ATA133接口、2MB缓存并使用滚珠轴承马达,L代表ATA133接口、2MB缓存并使用液态轴承马达,P代表ATA133接口、8MB缓存并使用液态轴承马达,M代表Serial-ATA接口、8MB缓存并使用液态轴承马达。

1:表示磁头数。

3. WD

WD硬盘的编号结构简单而且信息丰富。如WD1800JB可以分解为XX-XXXX-X-X,意义如下:

WD:表示WD硬盘;

1800:表示容量,后面一个“0”不看;

J:表示表示转速及缓存容量。A代表5400RPM、2MB缓存;B代表7200RPM、2MB缓存;J代表7200RPM、8MB缓存;

B:表示外部接口。A代表ATA66,B代表Ultra ATA100。

4. 三星

三星硬盘的标号也很简单,以SV6003H为例,可以分解为X-X-XXX-X-X,意义如下:

S:表示SpinPoint家族;

V:表示转速。V代表5400RPM,P代表7200RPM;

600:代表容量,后面一个“0”不看;

3:表示磁头数;

H:表示外部接口。D代表ATA66,H代表Ultra ATA100。

硬盘识别

目前,市面上的硬盘品牌大家已经耳熟能详,规模较大的厂商也无非就是IBM、昆腾(Quantum)、西捷(Seagate)等几家“名牌老字号”,不过,随着硬盘产品的不断推陈出新,对于各品牌硬盘型号的编号大多数用户已经难以解读。

其实,每个厂家的每款硬盘编号都有其一定的内在规律,而每串编号也都代表着硬盘本身特定的含义,而通过这些复杂的编号,用户可以更确切的了解硬盘的各种性能指标,包括接口类型、转速、容量、缓存等。

IBM

IBM的每一个产品又分为多个系列,其硬盘产品的命名方式为:“产品名+系列代号+接口类型+盘片尺寸+转速+容量”。

以Deskstar 22GXP的13.5GB硬盘为例,该硬盘的型号为:DJNA-371350,字母D代表Deskstar产品,JN代表Deskstar 25GP与22GP系列,A代表ATA接口,3代表3英寸盘片,7代表7200RPM产品,最后4位数字为硬盘容量13.5GB。

IBM系列代号(IDE)含义如下:TT=Deskstar 16GP或14GXP;JN=Deskstar 25GP或22GXP;RV=Ultrastar 18LZX或36ZX。 接口类型含义如下:A=ATA,S与U=Ultra SCSI,Ultra SCSI Wide,Ultra SCSI SCA,增强型SCSI,增强扩展型SCSI(SCA),C=Serial Storage Architecture;连续存储体系SCSI,L=光纤通道SCSI。

Maxtor(迈拓)

Maxtor硬盘的编号规则是:“首位+容量+接口类型+磁头数”。Maxtor从钻石四代开始,其首位数字就为9,一直延续至今,因此大家现在能够在市场上见到的Maxtor硬盘其首位数字大多数都是9。

另外,比较特殊的是Maxtor编号中有磁头数这一概念,因为Maxtor硬盘是大打单碟容量的发起人,所以其硬盘的型号中要将单碟容量的磁头数体现出来。单碟容量=2×硬盘总容量/磁头数,以金钻三代(DiamondMax Plus6800)10.2GB的硬盘为例说明:该硬盘型号为91024U3,9是首位,1024是容量,U是接口类型UDMA/66,3代表该硬盘有3个磁头,也就是说其中的一个盘片是单面有数据,这个单碟容量是2X10.2/3=6.8GB。Maxtor硬盘接口类型字母含义:A=PIO模式,D=UDMA/33模式,U=UDMA/66模式。

Seagate(希捷)

希捷的硬盘系列从低端到高端的产品名称分别为:U4系列、Medalist(金牌)系列、U8系列、Medalist Pro(金牌Pro)系列、Barracuda(酷鱼)系列、Barracuda II(酷鱼 II)系列、Barracuda III(酷鱼 III)系列。其中Medalist Pro、Barracuda(酷鱼)系列、Barracuda II(酷鱼 II)系列与Barracuda III(酷鱼 III)系列是7200RPM的产品,其他的是5400RPM的产品。

硬盘的型号均以ST开头,现以酷鱼10.2GB硬盘为例说明。该硬盘的型号是:ST310220A,在ST后第一位数字是代表硬盘的尺寸,3就是该硬盘采用3.5英寸的盘片,3后面的1022代表的是该硬盘的格式化容量是10.22GB,最后一位数字0是代表7200RPM产品。这一点不要与希捷以前的入门级产品Medalist ST38240A混淆。大多数希捷的Medalist Pro系列,以0结尾的产品均代表7200RPM硬盘,其他数字结尾(包括1、2)代表5400RPM产品。位于型号最后的字母是硬盘的接口类型。希捷硬盘的接口类型字母含义如下: A=ATA UDMA/33或UDMA/66 IDE接口; AG为笔记本电脑专用的ATA接口硬盘; W为Ultra Wide SCSI,其数据传输率为40MB/s; N为Ultra Narrow SCSI,其数据传输率为20MB/s; 而ST34501W/FC和ST19101N中的FC(Fibre Channel)表示光纤通道,可提供高达100MB/s的数据传输率,并且支持热拔插。

Quantum(昆腾)

昆腾硬盘的型号一般在盘体的条形标记上,可以在硬盘接口附近的外盘盖上找到。以EX64A012为例,其前两位的字母时表示硬盘类型,该例中EX指火球EX系列。第三四位的数字表示次硬盘的容量。第五位的字母是表示接口类型。接口字母的不同含义是这样的:A=ATA(IDE),S=SCSI,50-pin Sigle Ended;W=SCSI Wide,68-pin Sigle Ended;D=SCSI Wide,68-pin Differential。

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
打赏 0
更多相关文章

收藏

点赞