Polars 是一个使用 Apache Arrow 列格式作为内存模型,用Rust实现的,在Rust, Python以及Node.js中均可使用的速度极快的数据帧库。
它有以下几个特点:
- 懒|立即执行
- 多线程
- SIMD
- 查询优化
- 强大的表达式API
- 支持多种语言:Rust、Python 等
了解更多内容可以点击这个 用户指南 。
Python代码示例
>>> df = pl.Dataframe(
... {
... "A": [1, 2, 3, 4, 5],
... "fruits": ["banana", "banana", "apple", "apple", "banana"],
... "B": [5, 4, 3, 2, 1],
... "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
... }
... )
# embarrassingly parallel execution
# very expressive query language
>>> (
... df
... .sort("fruits")
... .select(
... [
... "fruits",
... "cars",
... pl.lit("fruits").alias("literal_string_fruits"),
... pl.col("B").filter(pl.col("cars") == "beetle").sum(),
... pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"), # groups by "cars"
... pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"), # groups by "fruits"
... pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"), # groups by "fruits
... pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"), # groups by "fruits"
... ]
... )
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
│ fruits ┆ cars ┆ literal_stri ┆ B ┆ sum_A_by_ca ┆ sum_A_by_fr ┆ rev_A_by_fr ┆ sort_A_by_B │
│ --- ┆ --- ┆ ng_fruits ┆ --- ┆ rs ┆ uits ┆ uits ┆ _by_fruits │
│ str ┆ str ┆ --- ┆ i64 ┆ --- ┆ --- ┆ --- ┆ --- │
│ ┆ ┆ str ┆ ┆ i64 ┆ i64 ┆ i64 ┆ i64 │
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
│ "apple" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 7 ┆ 4 ┆ 4 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ "apple" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 7 ┆ 3 ┆ 3 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ "banana" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 8 ┆ 5 ┆ 5 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ "banana" ┆ "audi" ┆ "fruits" ┆ 11 ┆ 2 ┆ 8 ┆ 2 ┆ 2 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ "banana" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 8 ┆ 1 ┆ 1 │
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘
性能
Polars速度非常快,事实上,它是目前性能最好的解决方案之一。具体可参见 h2oai's db基准测试结果 。
此处我们自己用一些示例代码来对比python中pandas和polars处理数据的速度差距。
import pandas as pd
import polars as pl
import timeit
# 读取时间对比
start_df = timeit.default_timer()
df = pd.read_csv("/Users/lenskit/Desktop/aa.csv")
df = df.sort_values("company_name", ascending=False).head()
stop_df = timeit.default_timer()
print('time: ', stop_df - start_df)
start_pl = timeit.default_timer()
data = pl.read_csv("/Users/lenskit/Desktop/aa.csv")
data.sort(by="company_name", reverse=True).head()
stop_pl = timeit.default_timer()
print('time1: ', stop_pl - start_pl)
# 纵向拼接时间对比
start_df1 = timeit.default_timer()
df_1 = pd.read_csv('/Users/lenskit/Desktop/aa.csv')
df_2 = pd.read_csv('/Users/lenskit/Desktop/bb.csv')
df_1.append(df_2, ignore_index=True)
stop_df1 = timeit.default_timer()
print('time2: ', stop_df1 - start_df1)
start_pl1 = timeit.default_timer()
pl_1 = pl.read_csv('/Users/lenskit/Desktop/aa.csv')
pl_2 = pl.read_csv('/Users/lenskit/Desktop/bb.csv')
pl_1.vstack(pl_2)
stop_pl1 = timeit.default_timer()
print('time3: ', stop_pl1 - start_pl1)
time: 5.088931238
time1: 0.8967700230000002
time2: 4.707102063
time3: 0.639797883
可以看到在读取文件上,polars比pandas速度快了5倍多,在数据纵向拼接上,polars比pandas快了有7倍多。
Python安装
用如下语句安装最新的polars版本:
$ pip3 install -U polars[pyarrow]
目前polars的更新频率很高(每周/每隔几天),所以最好定期更新一下polars来获得最新的错误修复/功能。
Rust安装
您可以从 http:// crates.io 获取最新版本,或者如果你想使用最新的功能/性能改进,可以用如下命令指向版本的master分支。
polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }
注意需要Rust version >=1.58
文档
想知道Polars支持的所有功能吗?阅读文档!
Python
- 安装指南:$ pip3 install polars
- Python文档https://link.zhihu.com/?target=https%3A//pola-rs.github.io/polars/py-polars/html/reference/index.html
- 用户指南https://link.zhihu.com/?target=https%3A//pola-rs.github.io/polars-book/user-guide/index.html
Rust
- Rust文件(主分支)https://link.zhihu.com/?target=https%3A//pola-rs.github.io/polars/polars/index.html
- 用户指南https://link.zhihu.com/?target=https%3A//pola-rs.github.io/polars-book/user-guide/index.html
Node
- 安装指南:yarn install nodejs-polars
- Node文档https://link.zhihu.com/?target=https%3A//pola-rs.github.io/polars/nodejs-polars/html/index.html
- 用户指南https://link.zhihu.com/?target=https%3A//pola-rs.github.io/polars-book/user-guide/index.html
[Python]: 从源代码编译polars
如果你想要获取最前沿的版本或最大的性能,你应该从源代码编译Polar。
这可以通过按顺序执行以下步骤来完成:
- 1、安装最新的 Rust编译器
- 2、安装 maturin :$ pip3 install maturin
- 3、选择以下任一:
- 最快的二进制文件,非常长的编译时间:
- $ cd py-polars && maturin develop --rustc-extra-args="-C target-cpu=native" --release
- 较快的二进制文件,短一些的编译时间:
- $ cd py-polars && maturin develop --rustc-extra-args="-C codegen-units=16 -C lto=
需要注意的是,Python实现的Rust crate被称为 py-polars ,以区别于Rust crate包 polars 本身。然而,Python包和Python模块都被命名为 polars ,所以你可以 pip install polars 和 import polars 。
Arrow2
Polars已经转移到 arrow2 。Arrow2是 Apache Arrow Columnar Format 更快、更安全的实现。Arrow2还具有更细粒度的代码库,有助于减少编译器膨胀。
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报