分享好友 站长动态首页 网站导航

字节跳动数据湖技术选型的思考

2022-06-21 09:08 · 头闻号数据库

字节跳动数据集成的现状

在2018年,我们基于Flink构造了异构数据源之间批式同步通道,主要用于将在线数据库导入到离线数仓,和不同数据源之间的批式传输。

在2020年,我们基于Flink构造了MQ-Hive的实时数据集成通道,主要用于将消息队列中的数据实时写入到Hive和HDFS,在计算引擎上做到了流批统一。

到了2021年,我们基于Flink构造了实时数据湖集成通道,从而完成了湖仓一体的数据集成系统的构建。

字节跳动数据集成系统目前支持了几十条不同的数据传输管道,涵盖了线上数据库,例如Mysql Oracle和MangoDB;消息队列,例如Kafka RocketMQ;大数据生态系统的各种组件,例如HDFS、HIVE和ClickHouse。

在字节跳动内部,数据集成系统服务了几乎所有的业务线,包括抖音、今日头条等大家耳熟能详的应用。

整个系统主要分成3种模式——批式集成、流式集成和增量集成。

随着业务的快速发展,这条链路暴露出来的问题也越来越多。

为了解决这些问题,我们希望对增量模式做一次彻底的架构升级,将增量模式合并到流式集成中,从而可以摆脱对Spark的依赖,在计算引擎层面做到统一。

改造完成后,基于Flink的数据集成引擎就能同时支持批式、流式和增量模式,几乎可以覆盖所有的数据集成场景。

同时,在增量模式上,提供和流式通道相当的数据延迟,赋予用户近实时分析能力。在达到这些目标的同时,还可以进一步降低计算成本、提高效率。

经过一番探索,我们关注到了正在兴起的数据湖技术。

关于数据湖技术选型的思考我们的目光集中在了Apache软件基金会旗下的两款开源数据湖框架Iceberg和Hudi中。Iceberg和Hudi两款数据湖框架都非常优秀。但两个项目被创建的目的是为了解决不同的问题,所以在功能上的侧重点也有所不同。

一番对比下来,两个框架各有千秋,并且离我们想象中的数据湖最终形态都有一定距离,于是我们的核心问题便集中在了以下两个问题:

经过多次的内部讨论,我们认为:Hudi在处理CDC数据上更为成熟,并且社区迭代速度非常快,特别是最近一年补齐了很多重要的功能,与Flink的集成也愈发成熟,最终我们选择了Hudi作为我们的数据湖底座。

01 - 索引系统

我们选择Hudi,最为看重的就是Hudi的索引系统。

这张图是一个有索引和没有索引的对比。在CDC数据写入的过程中,为了让新增的Update数据作用在底表上,我们需要明确知道这条数据是否出现过、出现在哪里,从而把数据写到正确的地方。

在合并的时候,我们就可以只合并单个文件,而不需要去管全局数据。如果没有索引,合并的操作只能通过合并全局数据,带来的就是全局的shuffle。在图中的例子中,没有索引的合并开销是有索引的两倍,并且如果随着底表数据量的增大,这个性能差距会呈指数型上升。

所以,在字节跳动的业务数据量级下,索引带来的性能收益是非常巨大的。Hudi提供了多种索引来适配不同的场景,每种索引都有不同的优缺点,索引的选择需要根据具体的数据分布来进行取舍,从而达到写入和查询的最优解。下面举两个不同场景的例子。

日志数据去重场景

在日志数据去重的场景中,数据通常会有一个create_time的时间戳,底表的分布也是按照这个时间戳进行分区,最近几小时或者几天的数据会有比较频繁的更新,但是更老的数据则不会有太多的变化。冷热分区的场景就比较适合布隆索引、带TTL的State索引和哈希索引。

CDC场景

第二个例子是一个数据库导出的例子,也就是CDC场景。这个场景更新数据会随机分布,没有什么规律可言,并且底表的数据量会比较大,新增的数据量通常相比底表会比较小。在这种场景下,我们可以选用哈希索引、State索引和Hbase索引来做到高效率的全局索引。这两个例子说明了不同场景下,索引的选择也会决定了整个表读写性能。Hudi提供多种开箱即用的索引,已经覆盖了绝大部分场景,用户使用成本非常低。

02 - Merge On Read表格式

除了索引系统之外,Hudi的Merge On Read表格式也是一个我们看重的核心功能之一。这种表格式让实时写入、近实时查询成为了可能。在大数据体系的建设中,写入引擎和查询引擎存在着天然的冲突:

为了在这种天然的冲突下找到最佳的取舍,Hudi支持了Merge On Read的文件格式。

MOR格式中包含两种文件:一种是基于行存Avro格式的log文件,一种是基于列存格式的base文件,包括Parquet或者ORC。log文件通常体积较小,包含了新增的更新数据。base文件体积较大,包含了所有的历史数据。

03 - 增量计算

索引系统和Merge On Read格式给实时数据湖打下了非常坚实的基础,增量计算则是这个基础之上的Hudi的又一个亮眼功能:

​增量计算赋予了Hudi类似于消息队列的能力。用户可以通过类似于offset的时间戳,在Hudi的时间线上拉取一段时间内的新增数据。在一些数据延迟容忍度在分钟级别的场景中,基于Hudi可以统一Lambda架构,同时服务于实时场景和离线场景,在储存上做到流批一体。

结语在选择了基于Hudi的数据湖框架后,我们基于字节跳动内部的场景,打造定制化落地方案。我们的目标是通过Hudi来支持所有带Update的数据链路。

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
打赏 0
更多相关文章

评论

0

收藏

点赞