分享好友 站长动态首页 网站导航

Redis 缓存击穿(失效)、缓存穿透、缓存雪崩怎么解决?

2022-03-31 09:46 · 头闻号数据库

原始数据存储在 DB 中(如 MySQL、Hbase 等),但 DB 的读写性能低、延迟高。

比如 MySQL 在 4 核 8G 上的 TPS = 5000,QPS = 10000 左右,读写平均耗时 10~100 ms。

用 Redis 作为缓存系统正好可以弥补 DB 的不足,「码哥」在自己的 MacBook Pro 2019 上执行 Redis 性能测试如下:

$ redis-benchmark -t set,get -n 100000 -q
SET: 107758.62 requests per second, p50=0.239 msec
GET: 108813.92 requests per second, p50=0.239 msec

TPS 和 QPS 达到 10 万,于是乎我们就引入缓存架构,在数据库中存储原始数据,同时在缓存总存储一份。

当请求进来的时候,先从缓存中取数据,如果有则直接返回缓存中的数据。

如果缓存中没数据,就去数据库中读取数据并写到缓存中,再返回结果。

这样就天衣无缝了么?缓存的设计不当,将会导致严重后果,本文将介绍缓存使用中常见的三个问题和解决方案:

缓存击穿(失效)

高并发流量,访问的这个数据是热点数据,请求的数据在 DB 中存在,但是 Redis 存的那一份已经过期,后端需要从 DB 从加载数据并写到 Redis。

关键字:单一热点数据、高并发、数据失效。

但是由于高并发,可能会把 DB 压垮,导致服务不可用。如下图所示:

缓存击穿

解决方案

过期时间 + 随机值

对于热点数据,我们不设置过期时间,这样就可以把请求都放在缓存中处理,充分把 Redis 高吞吐量性能利用起来。

或者过期时间再加一个随机值。

设计缓存的过期时间时,使用公式:过期时间=baes 时间+随机时间。

即相同业务数据写缓存时,在基础过期时间之上,再加一个随机的过期时间,让数据在未来一段时间内慢慢过期,避免瞬时全部过期,对 DB 造成过大压力。

预热

预先把热门数据提前存入 Redis 中,并设热门数据的过期时间超大值。

使用锁

当发现缓存失效的时候,不是立即从数据库加载数据。

而是先获取分布式锁,获取锁成功才执行数据库查询和写数据到缓存的操作,获取锁失败,则说明当前有线程在执行数据库查询操作,当前线程睡眠一段时间在重试。

这样只让一个请求去数据库读取数据。

伪代码如下:

public Object getData(String id) {
String desc = redis.get(id);
// 缓存为空,过期了
if (desc == null) {
// 互斥锁,只有一个请求可以成功
if (redis(lockName)) {
try
// 从数据库取出数据
desc = getFromDB(id);
// 写到 Redis
redis.set(id, desc, 60 * 60 * 24);
} catch (Exception ex) {
LogHelper.error(ex);
} finally {
// 确保最后删除,释放锁
redis.del(lockName);
return desc;
}
} else {
// 否则睡眠200ms,接着获取锁
Thread.sleep(200);
return getData(id);
}
}
}

缓存穿透

缓存穿透:意味着有特殊请求在查询一个不存在的数据,即数据不存在 Redis 也不存在于数据库。

导致每次请求都会穿透到数据库,缓存成了摆设,对数据库产生很大压力从而影响正常服务。

如图所示:

缓存穿透

解决方案

BloomFilter 要缓存全量的 key,这就要求全量的 key 数量不大,10 亿 条数据以内最佳,因为 10 亿 条数据大概要占用 1.2GB 的内存。

“说下布隆过滤器的原理吧!”

BloomFilter 的算法是,首先分配一块内存空间做 bit 数组,数组的 bit 位初始值全部设为 0。

加入元素时,采用 k 个相互独立的 Hash 函数计算,然后将元素 Hash 映射的 K 个位置全部设置为 1。

检测 key 是否存在,仍然用这 k 个 Hash 函数计算出 k 个位置,如果位置全部为 1,则表明 key 存在,否则不存在。

如下图所示:

布隆过滤器

哈希函数会出现碰撞,所以布隆过滤器会存在误判。

这里的误判率是指,BloomFilter 判断某个 key 存在,但它实际不存在的概率,因为它存的是 key 的 Hash 值,而非 key 的值。

所以有概率存在这样的 key,它们内容不同,但多次 Hash 后的 Hash 值都相同。

对于 BloomFilter 判断不存在的 key ,则是 100% 不存在的,反证法,如果这个 key 存在,那它每次 Hash 后对应的 Hash 值位置肯定是 1,而不会是 0。布隆过滤器判断存在不一定真的存在。

缓存雪崩

缓存雪崩指的是大量的请求无法在 Redis 缓存系统中处理,请求全部打到数据库,导致数据库压力激增,甚至宕机。

出现该原因主要有两种:

缓存大量数据同时过期

数据保存在缓存系统并设置了过期时间,但是由于在同时一刻,大量数据同时过期。

系统就把请求全部打到数据库获取数据,并发量大的话就会导致数据库压力激增。

缓存雪崩是发生在大量数据同时失效的场景,而缓存击穿(失效)是在某个热点数据失效的场景,这是他们最大的区别。

如下图:

缓存雪崩-大量缓存同时失效

解决方案

过期时间添加随机值

要避免给大量的数据设置一样的过期时间,过期时间 = baes 时间+ 随机时间(较小的随机数,比如随机增加 1~5 分钟)。

这样一来,就不会导致同一时刻热点数据全部失效,同时过期时间差别也不会太大,既保证了相近时间失效,又能满足业务需求。

接口限流

当访问的不是核心数据的时候,在查询的方法上加上接口限流保护。比如设置 10000 req/s。

如果访问的是核心数据接口,缓存不存在允许从数据库中查询并设置到缓存中。

这样的话,只有部分请求会发送到数据库,减少了压力。

限流,就是指,我们在业务系统的请求入口前端控制每秒进入系统的请求数,避免过多的请求被发送到数据库。

如下图所示:

缓存雪崩-限流

Redis 故障宕机

一个 Redis 实例能支撑 10 万的 QPS,而一个数据库实例只有 1000 QPS。

一旦 Redis 宕机,会导致大量请求打到数据库,从而发生缓存雪崩。

解决方案

对于缓存系统故障导致的缓存雪崩的解决方案有两种:

服务熔断和限流

在业务系统中,针对高并发的使用服务熔断来有损提供服务从而保证系统的可用性。

服务熔断就是当从缓存获取数据发现异常,则直接返回错误数据给前端,防止所有流量打到数据库导致宕机。

服务熔断和限流属于在发生了缓存雪崩,如何降低雪崩对数据库造成的影响的方案。

构建高可用的缓存集群

所以,缓存系统一定要构建一套 Redis 高可用集群,如果 Redis 的主节点故障宕机了,从节点还可以切换成为主节点,继续提供缓存服务,避免了由于缓存实例宕机而导致的缓存雪崩问题。

总结

 本文转载自微信公众号「码哥字节」,可以通过以下二维码关注。转载本文请联系码哥字节公众号。

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
打赏 0
更多相关文章

评论

0

收藏

点赞