作者:vivo互联网服务器团队-Hao Guangshi
一、背景
字段血缘是在表处理的过程中将字段的处理过程保留下来。为什么会需要字段血缘呢?
有了字段间的血缘关系,便可以知道数据的来源去处,以及字段之间的转换关系,这样对数据的质量,治理有很大的帮助。
Spark SQL 相对于 Hive 来说通常情况下效率会比较高,对于运行时间、资源的使用上面等都会有较大的收益。
平台计划将 Hive 任务迁移到 Spark SQL 上,同时也需要实现字段血缘的功能。
二、前期调研
开发前我们做了很多相关调研,从中得知 Spark 是支持扩展的:允许用户对 Spark SQL 的 SQL 解析、逻辑计划的分析和检查、逻辑计划的优化、物理计划的形成等进行扩展。
该方案可行,且对 Spark 的源码没有改动,代价也比较小,确定使用该方案。
三、Spark SQL 扩展
3.1 Spark 可扩展的内容
SparkSessionExtensions是比较重要的一个类,其中定义了注入规则的方法,现在支持以下内容:
- 【Analyzer Rules】逻辑计划分析规则
- 【Check Analysis Rules】逻辑计划检查规则
- 【Optimizer Rules.】 逻辑计划优化规则
- 【Planning Strategies】形成物理计划的策略
- 【Customized Parser】自定义的sql解析器
- 【(External) Catalog listeners catalog】监听器
在以上六种可以用户自定义的地方,我们选择了【Check Analysis Rules】。因为该检查规则在方法调用的时候是不需要有返回值的,也就意味着不需要对当前遍历的逻辑计划树进行修改,这正是我们需要的。
而【Analyzer Rules】、【Optimizer Rules】则需要对当前的逻辑计划进行修改,使得我们难以迭代整个树,难以得到我们想要的结果。
3.2 实现自己的扩展
class ExtralSparkExtension extends (SparkSessionExtensions => Unit) {
override def apply(spark: SparkSessionExtensions): Unit = {
//字段血缘
spark.injectCheckRule(FieldLineageCheckRuleV3)
//sql解析器
spark.injectParser { case (_, parser) => new ExtraSparkParser(parser) }
}
}
上面按照这种方式实现扩展,并在 apply 方法中把自己需要的规则注入到 SparkSessionExtensions 即可,除了以上四种可以注入的以外还有其他的规则。要让 ExtralSparkExtension 起到作用的话我们需要在spark-default.conf下配置
spark.sql.extensions=org.apache.spark.sql.hive.ExtralSparkExtension
在启动 Spark 任务的时候即可生效。
注意到我们也实现了一个自定义的SQL解析器,其实该解析器并没有做太多的事情。只是在判断如果该语句包含insert的时候就将 SQLText(SQL语句)设置到一个为FIELD_LINE_AGE_SQL,之所以将SQLText放到FIELD_LINE_AGE_SQL里面。因为在 DheckRule 里面是拿不到SparkPlan的我们需要对SQL再次解析拿到 SprkPlan,而FieldLineageCheckRuleV3的实现也特别简单,重要的在另一个线程实现里面。
这里我们只关注了insert语句,因为插入语句里面有从某些个表里面输入然后写入到某个表。
class ExtraSparkParser(delegate: ParserInterface) extends ParserInterface with Logging{
override def parsePlan(sqlText: String): LogicalPlan = {
val lineAgeEnabled = SparkSession.getActiveSession
.get.conf.getOption("spark.sql.xxx-xxx-xxx.enable").getOrElse("false").toBoolean
logDebug(s"SqlText: $sqlText")
if(sqlText.toLowerCase().contains("insert")){
if(lineAgeEnabled){
if(FIELD_LINE_AGE_SQL_COULD_SET.get()){
//线程本地变量在这里
FIELD_LINE_AGE_SQL.set(sqlText)
}
FIELD_LINE_AGE_SQL_COULD_SET.remove()
}
}
delegate.parsePlan(sqlText)
}
//调用原始的sqlparser
override def parseexpression(sqlText: String): expression = {
delegate.parseexpression(sqlText)
}
//调用原始的sqlparser
override def parseTableIdentifier(sqlText: String): TableIdentifier = {
delegate.parseTableIdentifier(sqlText)
}
//调用原始的sqlparser
override def parseFunctionIdentifier(sqlText: String): FunctionIdentifier = {
delegate.parseFunctionIdentifier(sqlText)
}
//调用原始的sqlparser
override def parseTableSchema(sqlText: String): StructType = {
delegate.parseTableSchema(sqlText)
}
//调用原始的sqlparser
override def parseDataType(sqlText: String): DataType = {
delegate.parseDataType(sqlText)
}
}
3.3 扩展的规则类
case class FieldLineageCheckRuleV3(sparkSession:SparkSession) extends (LogicalPlan=>Unit ) {
val executor: ThreadPoolExecutor =
ThreadUtils.newDaemonCachedThreadPool("spark-field-line-age-collector",3,6)
override def apply(plan: LogicalPlan): Unit = {
val sql = FIELD_LINE_AGE_SQL.get
FIELD_LINE_AGE_SQL.remove()
if(sql != null){
//这里我们拿到sql然后启动一个线程做剩余的解析任务
val task = new FieldLineageRunnableV3(sparkSession,sql)
executor.execute(task)
}
}
}
很简单,我们只是拿到了 SQL 然后便启动了一个线程去得到 SparkPlan,实际逻辑在
FieldLineageRunnableV3。
3.4 具体的实现方法
3.4.1 得到 SparkPlan
我们在 run 方法中得到 SparkPlan:
override def run(): Unit = {
val parser = sparkSession.sessionState.sqlParser
val analyzer = sparkSession.sessionState.analyzer
val optimizer = sparkSession.sessionState.optimizer
val planner = sparkSession.sessionState.planner
............
val newPlan = parser.parsePlan(sql)
PASS_TABLE_AUTH.set(true)
val analyzedPlan = analyzer.executeAndCheck(newPlan)
val optimizerPlan = optimizer.execute(analyzedPlan)
//得到sparkPlan
val sparkPlan = planner.plan(optimizerPlan).next()
...............
if(targetTable != null){
val levelProject = new ArrayBuffer[ArrayBuffer[NameexpressionHolder]]()
val predicates = new ArrayBuffer[(String,ArrayBuffer[NameexpressionHolder])]()
//projection
projectionLineAge(levelProject, sparkPlan.child)
//predication
predicationLineAge(predicates, sparkPlan.child)
...............
为什么要使用 SparkPlan 呢?当初我们考虑的时候,物理计划拿取字段关系的时候是比较准的,且链路比较短也更直接。
在这里补充一下 Spark SQL 解析的过程如下:
经过SqlParser后会得到逻辑计划,此时表名、函数等都没有解析,还不能执行;经过Analyzer会分析一些绑定信息,例如表验证、字段信息、函数信息;经过Optimizer 后逻辑计划会根据既定规则被优化,这里的规则是RBO,当然 Spark 还支持CBO的优化;经过SparkPlanner后就成了可执行的物理计划。
我们看一个逻辑计划与物理计划对比的例子:
一个 SQL 语句:
select item_id,TYPE,v_value,imei from t1
union all
select item_id,TYPE,v_value,imei from t2
union all
select item_id,TYPE,v_value,imei from t3
逻辑计划是这样的:
物理计划是这样的:
显然简化了很多。
得到 SparkPlan 后,我们就可以根据不同的SparkPlan节点做迭代处理。
我们将字段血缘分为两种类型:projection(select查询字段)、predication(wehre查询条件)。
这两种是一种点对点的关系,即从原始表的字段生成目标表的字段的对应关系。
想象一个查询是一棵树,那么迭代关系会如下从树的顶端开始迭代,直到树的叶子节点,叶子节点即为原始表:
那么我们迭代查询的结果应该为
id ->tab1.id ,
name->tab1.name,tabb2.name,
age→tabb2.age。
注意到有该变量
val levelProject = new ArrayBuffer
[ArrayBuffer[NameexpressionHolder]](),通过projecti-onLineAge 迭代后 levelProject
存储了顶层id,name,age对应的(tab1.id),(tab1.name,tabb2.name),(tabb2.age)。
当然也不是简单的递归迭代,还需要考虑特殊情况例如:Join、ExplandExec、Aggregate、Explode、GenerateExec等都需要特殊考虑。
例子及效果:
SQL:
with A as (select id,name,age from tab1 where id > 100 ) ,
C as (select id,name,max(age) from A group by A.id,A.name) ,
B as (select id,name,age from tabb2 where age > 28)
insert into tab3
select C.id,concat(C.name,B.name) as name, B.age from
B,C where C.id = B.id
效果:
{
"edges": [
{
"sources": [
3
],
"targets": [
0
],
"expression": "id",
"edgeType": "PROJECTION"
},
{
"sources": [
4,
7
],
"targets": [
1
],
"expression": "name",
"edgeType": "PROJECTION"
},
{
"sources": [
5
],
"targets": [
2
],
"expression": "age",
"edgeType": "PROJECTION"
},
{
"sources": [
6,
3
],
"targets": [
0,
1,
2
],
"expression": "INNER",
"edgeType": "PREDICATE"
},
{
"sources": [
6,
5
],
"targets": [
0,
1,
2
],
"expression": "((((default.tabb2.`age` IS NOT NULL) AND (CAST(default.tabb2.`age` AS INT) > 28)) AND (B.`id` > 100)) AND (B.`id` IS NOT NULL))",
"edgeType": "PREDICATE"
},
{
"sources": [
3
],
"targets": [
0,
1,
2
],
"expression": "((default.tab1.`id` IS NOT NULL) AND (default.tab1.`id` > 100))",
"edgeType": "PREDICATE"
}
],
"vertices": [
{
"id": 0,
"vertexType": "COLUMN",
"vertexId": "default.tab3.id"
},
{
"id": 1,
"vertexType": "COLUMN",
"vertexId": "default.tab3.name"
},
{
"id": 2,
"vertexType": "COLUMN",
"vertexId": "default.tab3.age"
},
{
"id": 3,
"vertexType": "COLUMN",
"vertexId": "default.tab1.id"
},
{
"id": 4,
"vertexType": "COLUMN",
"vertexId": "default.tab1.name"
},
{
"id": 5,
"vertexType": "COLUMN",
"vertexId": "default.tabb2.age"
},
{
"id": 6,
"vertexType": "COLUMN",
"vertexId": "default.tabb2.id"
},
{
"id": 7,
"vertexType": "COLUMN",
"vertexId": "default.tabb2.name"
}
]
}
四、总结
在 Spark SQL 的字段血缘实现中,我们通过其自扩展,首先拿到了 insert 语句,在我们自己的检查规则中拿到
SQL 语句,通过SparkSqlParser、Analyzer、Optimizer、SparkPlanner,最终得到了物理计划。
我们通过迭代物理计划,根据不同执行计划做对应的转换,然后就得到了字段之间的对应关系。当前的实现是比较简单的,字段之间是直线的对应关系,中间过程被忽略,如果想实现字段的转换的整个过程也是没有问题的。
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报