1. 电工基础知识接线图
电工基础知识接线图 电工基础
一 .电工基础知识1. 直流电路 电路 电路的定义: 就是电流通过的途径 电路的组成: 电路由电源、负载、导线、开关组成 内电路: 负载、导线、开关 外电路: 电源内部的一段电路 负载: 所有电器 电源: 能将其它形式的能量转换成电能的设备基本物理量1.2.1 电流1.2.1.1 电流的形成: 导体中的自由电子在电场力的作用下作有规则的定向运动就形成电流.1.2.1.2 电流具备的条件: 一是有电位差,二是电路一定要闭合.1.2.1.3 电流强度: 电流的大小用电流强度来表示,基数值等于单位时间内通过导体截面的电荷量,计算公式为 其中Q为电荷量(库仑); t为时间(秒/s); I为电流强度1.2.1.4 电流强度的单位是 “安”,用字母 “A”表示.常用单位有: 千安(KA)、安(A)、毫安(mA) 、微安(uA)1KA = 103A 1A = 103mA 1mA = 103uA1.2.1.5 直流电流(恒定电流)的大小和方向不随时间的变化而变化,用大写字母 “I”表示,简称直流电.1.2.2 电压1.2.2.1 电压的形成: 物体带电后具有一定的电位,在电路中任意两点之间的电位差,称为该两点的电压.1.2.2.2 电压的方向: 一是高电位指向低电位; 二是电位随参考点不同而改变.1.2.2.3 电压的单位是 “伏特”,用字母 “U”表示.常用单位有: 千伏(KV) 、伏(V)、毫伏(mV) 、微伏(uV)1KV = 103V 1V = 103 mV 1mV = 103 uV1.2.3 电动势1.2.3.1 电动势的定义: 一个电源能够使电流持续不断沿电路流动,就是因为它能使电路两端维持一定的电位差.这种电路两端产生和维持电位差的能力就叫电源电动势.1.2.3.2 电动势的单位是 “伏”,用字母 “E”表示.计算公式为 (该公式表明电源将其它形式的能转化成电能的能力)其中A为外力所作的功,Q为电荷量,E为电动势.1.2.3.3 电源内电动势的方向: 由低电位移向高电位1.2.4 电阻1.2.4.1 电阻的定义: 自由电子在物体中移动受到其它电子的阻碍,对于这种导电所表现的能力就叫电阻.1.2.4.2 电阻的单位是 “欧姆”,用字母 “R”表示.1.2.4.3 电阻的计算方式为: 其中l为导体长度,s为截面积,ρ为材料电阻率铜ρ=0.017铝ρ=0.028欧姆定律1.3.1 欧姆定律是表示电压、电流、电阻三者关系的基本定律.1.3.2 部分电路欧姆定律: 电路中通过电阻的电流,与电阻两端所加的电压成正比,与电阻成反比,称为部分欧姆定律.计算公式为 U = IR1.3.3 全电路欧姆定律: 在闭合电路中(包括电源),电路中的电流与电源的电动势成正比,与电路中负载电阻及电源内阻之和成反比,称全电路欧姆定律.计算公式为 其中R为外电阻,r0为内电阻,E为电动势电路的连接(串连、并连、混连)1.4.1 串联电路1.4.1.1 电阻串联将电阻首尾依次相连,但电流只有一条通路的连接方法.1.4.1.2 电路串联的特点为电流与总电流相等,即I = I1 = I2 = I3…总电压等于各电阻上电压之和,即 U = U1 + U2 + U3…总电阻等于负载电阻之和,即 R = R1 + R2 + R3…各电阻上电压降之比等于其电阻比,即 , , …1.4.1.3 电源串联: 将前一个电源的负极和后一个电源的正极依次连接起来.特点: 可以获得较大的电压与电源.计算公式为E = E1 + E2 + E3 +…+ Enr0 = r01 + r02 + r03 +…+ r0n1.4.2 并联电路1.4.2.1 电阻的并联: 将电路中若干个电阻并列连接起来的接法,称为电阻并联.1.4.2.2 并联电路的特点: 各电阻两端的电压均相等,即U1 = U2 = U3 = … = Un; 电路的总电流等于电路中各支路电流之总和,即I = I1 + I2 + I3 + … + In; 电路总电阻R的倒数等于各支路电阻倒数之和,即 .并联负载愈多,总电阻愈小,供应电流愈大,负荷愈重.1.4.2.3 通过各支路的电流与各自电阻成反比,即 1.4.2.4 电源的并联:把所有电源的正极连接起来作为电源的正极,把所有电源的负极连接起来作为电源的负极,然后接到电路中,称为电源并联.1.4.2.5 并联电源的条件:一是电源的电势相等;二是每个电源的内电阻相同.1.4.2.6 并联电源的特点:能获得较大的电流,即外电路的电流等于流过各电源的电流之和.1.4.3 混联电路1.4.3.1 定义: 电路中即有元件的串联又有元件的并联称为混联电路1.4.3.2 混联电路的计算: 先求出各元件串联和并联的电阻值,再计算电路的点电阻值;由电路总电阻值和电路的端电压,根据欧姆定律计算出电路的总电流;根据元件串联的分压关系和元件并联的分流关系,逐步推算出各部分的电流和电压.电功和电功率 电功 电流所作的功叫做电功,用符号 “A”表示.电功的大小与电路中的电流、电压及通电时间成正比,计算公式为 A = UIT =I2RT 电功及电能量的单位名称是焦耳,用符号 “J”表示;也称千瓦/时,用符号 “KWH”表示. 1KWH=3.6MJ电功率 电流在单位时间内所作的功叫电功率,用符号 “P”表示.计算公式为 电功率单位名称为 “瓦”或 “千瓦”,用符号 “W”或 “KW”表示;也可称 “马力.1马力=736W 1KW = 1.36马力电流的热效应、短路 电流的热效应 定义: 电流通过导体时,由于自由电子的碰撞,电能不断的转变为热能.这种电流通过导体时会发生热的现象,称为电流的热效应. 电与热的转化关系其计算公式为 其中Q为导体产生的热量,W为消耗的电能.短路 定义: 电源通向负载的两根导。
我想自学电工,线路图跟实际接线有什么窍门?
看线路接线图时,注意首先认清电路接线图中电气设备、装置和控制元器件,并要了解这些元器件的实际结构。
第1步:先看主电路的接线。看主电路时,从电源引入端看起。
顺着电源线走向逐渐观察接线的第1个元器件,第2个元器件,第3个元器件等等,最后一直到用电器。 第2步:分析辅助电路接线。
看辅助电路接线时,也是从辅助电路电源端看起。顺着电源线的一根导线走向,看其导线所接的第1个控制元器件,接着看从第1个控制元器件引出线所接的第2个元器件,接着看第2个控制元器件引出线所接的第3个控制元器件,如此一直到最后回到辅助电路电源的另外一根导线。
辅助电路是完整的回路。在分析辅助电路时,一定耍注意控制元器件之间的串联关系和并联关系,还要注意控制元器件的自锁环节和控制元器件之间的连锁环节。
电子电路中常常需要进行电路的接通、断开或转换,这时就要使用接线元件。接线元件有两大类:一类是开关;另一类是接插件。
怎样看电路图接线元件的符号( 1 )开关的符号 在机电式开关中至少有一个动触点和一个静触点。当我们用手扳动、推动或是旋转开关的机构,就可以使动触点和静触点接通或者断开,达到接通或断开电路的目 的。
动触点和静触点的组合一般有 3 种: ① 动合(常开)触点,符号见图 6 ( a ); ② 动断(常闭)触点,符号是图 6 ( b ); ③ 动换(转换)触点,符号见图 6 ( c )。一个最简单的开关只有一组触点,而复杂的开关就有好几组触点。
开关在电路图中的图形符号见图 7 。其中( a )表示一般手动开关;( b )表示按钮开关,带一个动断触点;( c )表示推拉式开关,带一组转换触点;图中把扳键画在触点下方表示推拉的动作;( d )表示旋转式开关,带 3 极同时动合的触点;( e )表示推拉式 1*6 波段开关;( f )表示旋转式 1*6 波段开关的符号。
开关的文字符号用“ S ”,对控制开关、波段开关可以用“ SA ”,对按钮式开关可以用“ SB ”。 ( 2 )接插件的符号 接插件的图形符号见图 8 。
其中( a )表示一个插头和一个插座,(有两种表示方式)左边表示插座,右边表示插头。( b )表示一个已经插入插座的插头。
( c )表示一个 2 极插头座,也称为 2 芯插头座。( d )表示一个 3 极插头座,也就是常用的 3 芯立体声耳机插头座。
( e )表示一个 6 极插头座。为了简化也可以用图( f )表示,在符号上方标上数字 6 ,表示是 6 极。
接插件的文字符号是 X 。为了区分,可以用“ XP ”表示插头,用“ XS ”表示插座。
电工接线口诀是什么?
为二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。 口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是”截面乘上一定的倍数”来表示,通过心算而得。
倍数随截面的增大而减小。二点五下乘以九,往上减一顺号走为2.5mm及以下的各种截面铝芯绝缘线,其载流量约为截面积数的9倍。
三十五乘三点五,双双成组减点五为35mm的导线载流量为截面积数的3.5倍。条件有变加折算,高温九折铜升级为铝芯绝缘线、明敷在环境温度25℃的条件下而定的。
穿管根数二三四,八七六折满载流为在穿管敷设两根、三根、四根电线的情况下,其载流量分别是电工口诀计算载流量(单根敷设)的80%、70%、60%。
扩展资料:
2、电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机、电器、线路之间的电气接线;由电气接线图可获得对该系统的更细致的了解。 3、电气设备使用的电气接线图是用来组织排列电气设备中各个零部件的端口编号以及该端口的导线电缆编号,同时还整理编写接线排的编号,以此来指导设备合理的接线安装以及便于日后维修电工尽快查找故障。
三相异步电动机的正反转控制的工作原理
在实际应用中,往往要求生产机械改变运动方向,如工作台前进,后退;电梯的上升、下降等等,这就要求电动机能实现正、反转。对于三角异步电动机来说,可用两个接触器来改变电动机绕组相序来实现。电动机正、反转控制线路如图1所示。图1中接触器KM1为正向接触器,控制电动机M正转;接触器KM2为反向接触器,控制电动机的反转。
在图1的控制系统中,当起动按钮SB1松开后,接触器KM1、KM2的线圈通过其辅助常开触头的闭合仍保持通电,从而保持电动机的连续运行。这种依靠接触器自身辅助常开触头而使线圈保持通电的控制方式,称自锁或自保。起到自锁作用的辅助常开触头称自锁触头。
图1 电动机正、反转控制线路
图1中辅助常闭触头KM1、KM2的作用是实现电气互锁,当任何一个接触器先通电后,即使按下相反方向的起动按钮,另一个接触器也无法通电,防止两个接触器同相通电,造成电源短路。起互锁作用的触头叫互锁触头。
线路设有以下保护环节:
短路保护 短路时熔断器FU的熔体熔断而切断电路起保护作用。
电动机长期过载保护 采用热继电器FR。由于热断电器的热惯性较大,即使发热元件流过几倍于额定值的电流,热继电器也不会立即动作。因此在电动机起动时间不太长的情况下,热继电器不会动作,只有在电动机长期过载时,热断电器才会支作,用它的常闭触头使控制电路断电。
欠电压、失电压保护 通过接触器KM的自锁环节来实现。当电源电压由于某种原因而严欠电压或失电压(如停止)时,接触器KM断电释放,电动机停止转动。当电源电压电压恢复正常时,接触器线圈不会自行通电,电动机也不会自行起动,只有在操作人员重新按下后方可起动。
图用消息发出(这里未粘贴上)
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报