板式换热器在化工、石油和供热等行业中的应用较为广泛。但板式换热器的选择过程十分复杂,且需要优化供热系统。因此,本文主要分析了节能设计在板式换热器供热系统中的具体应用方法,并分别对供热系统的工作原理、系统设计中存在的问题和供热系统优化设计的方法等进行了分析。
一、板式换热器供热系统的工作原理分析
板式换热器主要由多个板片组装而成,且各个板片间均留有一定的空隙。当流体经过板片时,板片之间的间隙能起到冷热交换的作用。由于流道空间非常小,流体在流经板片时的速度较快,易形成湍流,湍流间会形成较大的波纹。湍流波纹的影响大大提升了板式换热器的换热性能。与一般的换热器相比,其换热性能优于一般的换热器,这是板式换热器可代替一般换热器的重要原因之一。
此外,湍流波纹还会增强板片的刚度,当两种流体流过板片四个角的孔洞后会在板式换热器中形成流道,最后形成顺向或逆向流动。此时,可将板片当作流通介质实现热量的交换,进而完成板式换热器的供热环节。分析板式换热器供热系统可进一步了解其存在的问题,比如板片的承受能力、流程安排能否改变、湍流波纹能否得到有效应用等。根据以上分析,我们应不断优化与板式换热器结构有关的设计,从而提升换热器供热系统的换热性能。
二、在供热及空调制冷系统的应用
1、水--水换热系统的应用
我国供热系统中供暖热源方式主要有蒸汽和热水,采用热水供热是节约能源和投资,保证工艺条件的首选。随着城镇建设的发展,供热技术、设备水平的不断提高,越来越多的地区采用板式换热器作为水-水新型换热设备进行供热,特别在集中供热工程系统中,显示出了巨大的节能经济效益和社会效益,保护环境,稳定室温,给人们提供了舒适的生活环境。
2、汽--水换热系统的应用
汽-水换热系统的热源蒸汽主要来自热电厂或区域锅炉房,一般饱和蒸汽压在0.4~1.0Mpa之间,温度在143~179℃之间,温度超过150℃时需加减温器。
板式换热器是汽-水换热的优选设备,换热效率高,运行可靠,被加热水的水温比较稳定,符合工艺生产及供暖生活用热的需求,并可节约能源和用材。
3、板式换热机组在供热系统的应用
随着城市集中供热的迅速发展,许多国家在集中供热的热力站和生活热水供应中广泛采用板式换热器组成的换热机组。
换热机组是主要由板式换热器、二次水循环泵、管道、仪表、阀门及电控系统组成。可根据不同的换热需求及维修管理方便采用双泵、双换热器方案,满足用热单位的各种需求。
4、生活热水供应中的应用
生活热水是满足城乡和厂矿职工生活用热和保证淋浴、洗涤之用,其特点是量大面广,要求安全供应、连续不断、使用方便。生活热水使用温度一般在25~60℃之间,属于低温热能利用。
板式换热器对生活热水换热供应是很适用的,能达到节能、安全可靠和高效益的要求。
5、地热集中供热系统的应用
我国地热资源丰富,由于地热温度、水质不同,形成了地热能源多种多样的利用项目,如供暖、水产养殖、农业温室、工业烘干、医疗、饮食等行业。采用地热集中供暖在技术上可行,经济上合理,有利于改善环境,有显著的经济和社会效益。
地热资源单井水量不大(100t/h左右),水温不高(100℃以下),但矿化程度高、腐蚀性介质含量多,因此选用的换热器要具有耐腐蚀,抗结垢性能好,传热效率高,结构紧凑,易于清洗、维护和拆修,设备耐用等性能。
板式换热器是在地热利用中最理想的换热设备。
6、空调制冷系统中的应用
对生产工艺中要求恒温、恒湿的工作条件和质量保证环境时,都要求集中或分散的空调制冷系统。公用建筑大型商厦、饭店、宾馆的高层建筑空调制冷系统设计时,空调水系统合理划分和安全保障极为重要,也关系到设备投资运行费用和管理的安全可靠性。
制冷系统要求换热设备热效率高、结构紧凑、密封性好、清洗检修方便、防腐防垢性好,板式换热器比较全面的满足上述要求,从而得到了广泛应用。
7、除氧系统中的应用
工业锅炉给水及工业用水中若存在溶解氧,对锅炉、用汽、用水设备、热力管网管路设备等的使用寿命均有影响,并造成材料的巨大浪费,严重时会直接影响生产和生活用热的正常秩序,为此,需先进行给水除氧。
我国工业蒸汽锅炉及2t/h以上的热水锅炉及热力网都要求除氧,并作出了有关规定。GB1576《低压锅炉水质标准》中指出,供水温度大于95℃时必须除氧。
热力除氧和真空除氧都需要板式换热器获取高温(95℃以上)或低温(40~50℃)的水,达到除氧沸腾温度,提高水质。
三、板式换热器供热系统存在的问题
1.换热与降压的匹配问题
对于板式换热器而言,换热系数与通道中流体的流速成正比,即当通道内流体的速度较快时,换热系数会增大,且流速加快会导致流体受到的阻力不断增加,进而加大了流体压力的损耗。因此,应选取适当的流速或寻求压力损耗与换热系数的平衡,从而不断提升板式换热器供热系统的综合性能。
2.研究不够完善
板式换热器在我国的起步较晚、研究时间较短,这在一定程度上限制了供热系统的发展,进而对供热系统的节能设计造成了影响。此外,我国对板式换热器的研究不够深入,缺乏一定的技术专利。因此,相关部门应加大资金投入,购买相应的专利。
3.应用场合受到限制
板式换热器具有独特的优势,但也存在一些问题。就当前供热系统的设计而言,存在很多缺陷,比如节能设计在供热系统中的应用受到了限制,主要表现在换热器难以在高温、高压的环境中运行。这是因为板式换热器中的核心元件为较薄的金属片,其承受压力的能力有限,而板式换热器常用于重工业生产中,这就需要板式换热器具备较强的承受压力的能力。由此可见,对于板式换热器供热系统而言,突破以往应用场合的限制是其应用节能设计的基本条件之一。
供热系统节能设计的优化方法
在分析了板式换热器的工作原理后,深入了解了影响其换热性能的因素,比如板片的波纹、流速、换热系数、流道的安排等。对于板式换热器供热系统的节能设计而言,应充分考虑其影响因素,不断优化供热设计中的各个子系统,具体方法如图2所示。
1.不断优化整体设计
对于整个板式换热器供热系统而言,节能设计不只是在供热系统的设计环节中需要考虑的问题,在换热器方面也需考虑该问题。因此,在优化供热系统板片的同时,还应优化板式换热器的结构和功能,从整体上实现供热系统的节能优化,从而实现供热系统的节能设计。此外,对于不同的应用要求和场合,应合理选择优化的方法和系数。
2.不断优化板片设计
在板式换热器供热系统中,优化板片是非常关键的环节,主要包括以下2步:①板片承受压力的能力对板式换热器供热系统的性能影响很大,因此,需要研制一些性能良好的制作材料,这也属于研发换热器的主要研究方向之一。②优化板片强度及其表面的波纹。应仔细分析板片波纹的类型、高度和波纹角等。只有合理优化板片设计,才有可能实现板式换热器供热系统的节能设计。
3.匹配换热系数与压降
换热系数与压降的匹配主要指平衡流体所受压力的损耗和换热系数。通常情况下,可采用传热的单元数法、对数的平均温差法和单侧的压降最大化的利用法等。这样做的主要目的是有效分析板片可承受的最大压降或最适宜的压降,从而准确推算出流体在流经通道时的压降和流速,从而找到一种压降值最大的设计方法,并找到比较合适的换热系数与降压匹配,从而增强板片承受压力的能力。
本文介绍了关于“节能设计在板式换热器供热系统中的应用分析”的内容。欢迎登陆中达咨询,查询更多相关信息。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
目前我国对于地源热泵及水源热泵的研究已经较为成熟,土壤、地下水、井水等低位热源作为热泵系统的冷热源得到了广泛的研究与应用。但是地源热泵与水源热泵的选择受到当地地质及水源情况的制约,需根据实际情况慎重选用。对于我国各沿海城市来说,拥有廉价而丰富的海水,能否将之应用于热泵技术中,来解决城市的供暖与供冷问题,这将是暖通行业的又一研究课题。
1 、国内外研究现状
1.1 国外研究现状
目前,海水源热泵的研究与应用主要集中在中、北欧各地区,如瑞典、瑞士、奥地利、丹麦等国家,尤其是瑞典,其在利用海水源热泵集中供热供冷方面已有先进而成熟的经验。位于瑞典斯德哥尔摩市苏伦图那的集中供热供冷系统是目前世界上最大的集中供热供冷系统,其制热制冷能力为200MW,管网延伸距岸边最长达20km.该工程建于八十年代中期,位于波罗的海海边,是利用海水制热制冷的典范,近几年瑞典利用海水集中供热供冷发展非常迅速,预计在未来十年中将突破500GWh的能力。
1987年,挪威的Stokmarknes医院,建筑面积14000m2,采用了海水源热泵来解决其漫长冬季的供热问题,同时采用一台燃油锅炉来满足其峰值负荷。该热泵的供热能力为2200MWh/年。自运行以来,每年可节能1235MWh[1],节约运行费用?31,743,同时可减少CO2排放量800t,SO2排放量5.5t.
1992年Halifax滨海地区的Purdy‘s Wharf办公商用综合楼,建筑面积69000m2.该地区每年大约有十个半月需要供冷,而其海水水下23m处全年水温一般在10℃以下,因此该综合楼采用了海水源热泵系统为其供冷。经过运行证明,该热泵系统较传统制冷系统多投资的费用在两年内即可回收[2],具有明显的节能效果。
此外2000年悉尼奥运会的场馆也使用了海水源热泵技术。
1.2 国内研究现状
在国内,海水的利用主要集中在利用海水进行工业冷却上,近几年海水的用途正在逐渐扩大,已发展成为利用海水做溶剂、还原剂、除尘、饮用水、冲渣冲灰、洗涤净化、水淬、试漏以及生活上使用海水冲厕所、冲洗地面、洗涤、消防等。
关于海水作为空调冷热源的问题,1996年青岛理工大学(原青岛建筑工程学院)的于立强教授针对青岛东部开发区14万m2建筑的冷热源选择提出了建设海水冷热源大型热泵站的可行性分析。
2002年天津科技大学陈东博士提出以海水作为冷热源,应用大型的制冷&热泵系统,为沿海城市集中进行冷暖供应的方案,并进行了一系列的分析说明。
但就目前为止,对于将海水应用于城市集中供热供冷的冷热源方案都只局限于理论分析与构想,缺乏实验依据,更未应用于工程实际中。
2 、工程应用
2.1 工程背景
青岛市是我国东部重要的经济中心城市、港口城市,是中国历史文化名城和滨海旅游胜地,同时又作为北京2008年奥运会的伙伴城市,具有世界窗口的作用。而目前奥帆赛所处的东部沿海一线,其高竖的烟囱及屋顶冷却塔严重破坏了东部环境的美化,同时造成了环境污染,与绿色奥运精神极不相符,因此为突出“新青岛、新奥运”的主题,青岛市政府已经着手进行全面规划,进一步改善城市生态环境,逐步取消沿海一线的燃煤锅炉,寻求新的、可再生的能源来为城市供暖与供冷。
由于青岛地区的地质以花岗岩、变质岩结构为主,储水性能差,开发利用土壤能源存在一定困难;青岛地区的地下水自成一个闭合流域,无稳定客水汇入,储水量丰欠变化完全受大气降水影响,而地下含水沙层浅隙少,储量少,因此利用地下水作为热泵冷热源不能提供可靠、稳定的水量。而青岛由于其天然的地理位置,处于山东半岛南端、黄海之滨,三面环海,海岸线总长度为862km,海湾49处,海岛69个,拥有近海海域1.38万km2,海水资源非常丰富,为海洋资源的开发提供了广阔的空间。
有鉴于此,在青岛市政府大力支持下,借鉴瑞典先进成熟的海水源热泵集中供热供冷的经验,青岛市率先于2004年11月在青岛某厂综合楼建成海水源热泵空调系统的试验研究基地,并于2005年1月开始对该系统进行实验测试工作,以掌握并分析该系统的运行特性,为该技术在我国沿海地区的推广应用提供可靠的实验依据。
2.2 工程概况
青岛某厂综合楼建筑面积2494.7m2,共2层,一层层高5.0m,建筑面积为1589.5m2,主要包括工作间、配膳间、餐厅等;二层层高4.2m,建筑面积为905.2m2,主要包括活动室、娱乐室、会议室、图书馆、办公室等。原有建筑除餐厅设有三台柜式空调机组外,其它功能房间均无任何空调设施。邻近该综合楼建有一浴室,需热水量为100m3/d,原设计是利用蒸汽换热,将热水储存于一20m3的储热水箱内,再提供给浴室使用。根据空调负荷计算,该综合楼空调冷负荷为231.5kW,空调热负荷为187.2kW,浴室最大热负荷为273.5kW.
2.3 系统方案[3]
经过综合比较分析,考虑到系统的示范性及今后的推广价值,同时为确保热泵机组的使用寿命,保证机组的稳定正常运行,确定在该试点工程中采用开式间接利用方式,即采用换热器将海水与热泵机组隔离开,利用循环水泵将海水通过输送管道送至换热器中,使其与热泵回水在换热器中实现能量交换,从而将海水的冷热量传递给水环系统的循环介质,再通过循环介质将冷热量在热泵的蒸发器(或冷凝器)中传递给末端空调系统,而放出冷热量的海水则通过排水管道输送回海面。这种方式具有供热制冷效率高,供水温度稳定的优点,且由于与海水直接接触的设备只有换热器,若选择耐腐蚀的板式换热器,则可以方便的进行清洗或更换[4,5].
该系统海水冷热源来自于经过过滤、杀菌、祛藻处理后输送至厂内取水口处的海水,该取水口位于离综合楼200m远处。由于该厂自1936年以来就采用海水作为工业冷却用水,其海水取水管路及海水处理设备配套齐全,海水外网取水口位于距海边3km的大海中,海水处理设备集中布置在近海一侧,从外网取水口来的海水通过输送管道进入海水处理机房,经过过滤器过滤,再由电解海水法产生的次氯酸钠杀死海水管路中的海生物幼虫或虫卵,然后输送至厂内取水口,再由厂内取水口利用水泵送至各用水车间。因此冬夏季均可直接取用此取水口的海水作为空调系统的冷热源。
2.4 系统组成
海水源热泵空调系统主要包括海水循环系统、水环热泵系统及末端空调系统等三部分,其中海水循环部分由取水构筑物、海水引入管道、海水泵站及海水排出管道组成。由于该系统直接取用厂内取水口处的海水,因此海水循环系统仅包括海水引入与排出管道及海水循环泵。
该系统的主要设备包括海水循环泵、板式换热器、二次网循环水泵、热泵机组、电子水处理仪、补给水泵和补水箱等。同时配备一套自动控制装置,检测安装于管道上的温度传感器测出的供回水温度,转化为电信号后在控制器中与设定值进行比较,通过控制器控制一二次网循环水泵的变频器,调节水泵输入功率,达到节能的目的,同时便于运行管理。
综合楼空调系统选用吊装式水-空气热泵机组,直接吊装于走廊或空调房间内,加热浴室热水的热泵机组选用水-水式,落地安装于空调机房内。
2.5 防腐及防海生物附着措施[3]
对于利用海水作为热泵系统冷热源这一问题,人们比较关心的技术问题主要是海水对设备和管道的腐蚀和海生物附着造成的管道和设备的堵塞等问题,由于该试点工程取用的海水已经经过集中处理,因此仅在以下三方面采取了措施:
(1)换热器采用钛板可拆式板式换热器,其在防腐防生物附着方面的优点主要体现在:①设备材料采用钛钢板,而钛钢具有强度高、传热效率高、耐腐蚀性强等优点,因此应用于海水循环系统中,不仅能够达到很好的传热效果,而且可以解决海水对设备的腐蚀问题;②清洗或更换方便。可拆式换热器只要松动压紧螺栓,即可松开板束或卸下板束进行机械清洗,由于该热泵空调系统中与海水直接接触的只有换热器,因此系统只有在换热器处才会由于海生物的附着而堵塞,而采用可拆式换热器则可以很好的解决这一问题。
(2)海水循环泵采用专用的耐腐蚀管道泵。
(3)海水取水和排水管采用UPVC管材。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报