最佳答案:
酵母人工染色体(Yeast artificial chromosomes,简称YAC),是一种能够克隆长达400Kb的DNA片段的载体,含有酵母细胞中必需的端粒、着丝点和复制起始序列,是细胞内具有遗传性质的物体,易被碱性染料染成深色,所以叫染色体(染色质)。其本质是脱氧核苷酸,是细胞核内由核蛋白组成、能用碱性染料染色、有结构的线状体,是遗传物质基因的载体。酿酒酵母是第一个被全基因组测序的真核生物。
详情介绍
酵母人工染色体(Yeast artificial chromosomes,简称YAC),是一种能够克隆长达400Kb的DNA片段的载体,含有酵母细胞中必需的端粒、着丝点和复制起始序列,是细胞内具有遗传性质的物体,易被碱性染料染成深色,所以叫染色体(染色质)。其本质是脱氧核苷酸,是细胞核内由核蛋白组成、能用碱性染料染色、有结构的线状体,是遗传物质基因的载体。酿酒酵母是第一个被全基因组测序的真核生物。
2017年3月10日出版的国际顶级学术期刊《科学》,以封面的形式同时刊发了中国科学家完成的4条真核生物酿酒酵母染色体的从头设计与化学合成的4篇研究长文。
- 中文名
- 酵母人工染色体
- 外文名
- Yeast artificial chromosomes
- 简称
- YAC
- 本质
- 脱氧核苷酸
- 标记基因
- pYAC4
- 相关期刊
- 《科学》
酵母人工染色体标记基因
在 YAC载体中最常用的是 pYAC4 。由于酵母的染色体是线状的,因此其在工作状态也是线状的。但是,为了方便制备YAC载体, YAC 载体以环状的方式存在,并增加了普通大肠杆菌质粒载体的复制元件和选择标记,以便保存和增殖。
酵母人工染色体复制元件
YAC 载体的复制元件是其核心组成成分,其在酵母中复制的必需元件包括复制起点序列即自主复制序列(autonomously replicating sequence, ARS)、用于有丝分裂和减数分裂功能的着丝粒(centromere,CEN)和两个端粒(TEL)。
YAC 载体为能够满足自主复制、染色体在子代细胞间的分离及保持染色体稳定的需要,必须含有以下元件:
酵母人工染色体端粒重复序列
(telomeric repeat , TEL):定位于染色体末端一段序列,用于保护线状的 DNA 不被胞内的核酸酶降解,以形成稳定的结构。
酵母人工染色体着丝粒
(centromere , CEN):有丝分裂过程中纺锤丝的结合位点, 使染色体在分裂过程中能正确分配到子细胞中 。在 YAC 中起到保证一个细胞内只有一个人工染色体的作用。如 pYAC4 使用的是酵母第四条染色体的着丝粒。
酵母人工染色体自主复制序列
(autonomously replication sequences,ARS):一段特殊的序列,含有酵母菌中 DNA 进行双向复制所必须的信号。
酵母人工染色体标记方法
YAC 载体的选择标记主要采用营养缺陷型基因,如色氨酸、亮氨酸和组氨酸合成缺陷型基因 trp 1、 leu 2和 his 3、尿嘧啶合成缺陷型基因 ura3 等,以及赭石突变抑制基因 sup4 。与 YAC 载体配套工作的宿主酵母菌(如AB1380)的胸腺嘧啶合成基因带有一个赭石突变ade 2-1。带有这个突变的酵母菌在基本培养基上形成红色菌落,当带有赭石突变抑制基因 sup4 的载体存在于细胞中时,可抑制 ade 2-1基因的突变效应,形成正常的白色菌落。利用这一菌落颜色转变的现象,可用于筛选载体中含有外源DNA片段插入的重组子。
酵母人工染色体工作原理
YAC 载体主要是用来构建大片段 DNA 文库,特别用来构建高等真核生物的基因组文库,并不用作常规的基因克隆。图3-26是 pYAC4 的遗传结构图,当用BamHⅠ切割成线状后,就形成了一个微型酵母染色体,包含染色体复制的必要顺式元件,如自主复制序列、着丝粒和位于两端的端粒。这些元件在酵母菌中可以驱动染色体的复制和分配,从而决定这个微型染色体可以携带酵母染色体大小的DNA片段。图3-27描绘了 YAC 载体的原理性工作流程。对于BamHⅠ切割后形成的微型酵母染色体,当用EcoRⅠ或SmaⅠ切割抑制基因 sup4 内部的位点后形成染色体的两条臂,与外源大片段 DNA 在该切点相连就形成一个大型人工酵母染色体,通过转化进入到酵母菌后可象染色体一样复制,并随细胞分裂分配到子细胞中去,达到克隆大片段DNA 的目的。装载了外源DNA片段的重组子导致抑制基因 sup4 插入失活,从而形成红色菌落; 而载体自身连接后转入到酵母细胞后形成白色菌落。这些红色的装载了不同外源DNA片段的重组酵母菌菌落的群体就构成了YAC文库。YAC文库装载的DNA片段的大小一般可达200-500kb,有的可达1Mb以上,甚至达到2Mb。
YAC 载体功能强大,但有一些弊端。这主要表现在 3 个方面:首先,在 YAC 载体的插入片段会出现缺失(deletion) 和基因重排(rearrangement) 的现象。其次,容易形成嵌合体。嵌合就是在单个 YAC 中的插入片段由 2 个或多个的独立基因组片段连接组成。嵌合克隆约占总克隆的 5%~50% 。最后, YAC 染色体与宿主细胞的染色体大小相近,影响了 YAC 载体的广泛应用。 YAC 染色体一旦进入酿酒酵母细胞,由于其大小与内源的染色体的大小相近,就很难从中分离出来,不利于进一步分析。但是 YAC 的一个突出优点是,酵母细胞比大肠杆菌对不稳定的、重复的和极端的 DNA 有更强的容忍性。另外, YAC 在功能基因和基因组研究中是一个非常有用的工具。由于高等真核生物的基因大多数是多外显子结构并且有长长的内含子,大型基因组片段可通过 YAC 载体转移到动物或动物细胞系中,进行功能研究。
酵母人工染色体研究现状
2014年,Sc2.0已创建了一个单一的人工酵母染色体。
2017年3月10日出版的国际顶级学术期刊《科学》,以封面的形式同时刊发了中国科学家完成的4条真核生物酿酒酵母染色体的从头设计与化学合成的4篇研究长文。中外科学家们共完成了5条染色体的化学合成,其中中国科学家完成了4条,占完成数量的66.7%,把Sc2.0计划向前推进了一大步。由天津大学、清华大学和华大基因分别完成的这4篇长文,突破了生物合成方面的多项关键核心技术,比如:突破合成型基因组导致细胞失活的难题,设计构建染色体成环疾病模型,开发长染色体分级组装策略,证明人工设计合成的基因组具有可增加、可删减的灵活性等。
其中,元英进带领的天津大学团队完成了5号、10号(synV、synX)染色体的化学合成,并开发了高效的染色体缺陷靶点定位技术和染色体点突变修复技术;戴俊彪研究员带领清华大学团队完成了当前已合成染色体中最长的12号染色体(synXII)的全合成;深圳华大基因研究院团队联合英国爱丁堡大学团队完成了2号染色体(synII)的合成及深度基因型-表型关联分析。“5号染色体”文章第一作者、天津大学博士生谢泽雄说,在全面推进Sc2.0计划的过程中,他们建立了基于多靶点片段共转化的基因组精确修复技术和DNA大片段重复修复技术,解决了超长人工DNA片段的精准合成难题。同时,首次实现了真核人工基因组化学合成序列与设计序列的完全匹配,系统性支撑与评价了当前真核生物的设计原则。该技术的突破为研究人工设计基因组的重新设计、功能验证与技术改进奠定了基础。利用化学合成的酵母5号染色体定制化建立了一组环形染色体模型,通过人工基因组中设计的特异性水印标签实现对细胞分裂过程中染色体变化的追踪和分析,为研究当前无法治疗的环形染色体疾病、癌症和衰老等发生机理和潜在治疗手段提供了了研究模型。此外,发展了多级模块化和标准化基因组合成方法,创建了一步法大片段组装技术和并行式染色体合成策略,实现了由小分子核苷酸到活体真核染色体的定制精准合成。”
清华大学的戴俊彪团队,则设计合成了12号染色体。在研究中,他们开发了长染色体分级组装的策略,即:首先通过大片段合成序列,在6个菌株中分别完成了对染色体不同区域内源DNA的逐步替换;然后利用酵母减数分裂过程中同源重组的特性,将多个菌株中的合成序列进行合并,获得完整的合成型染色体。针对12号染色体上存在的高度重复的核糖体RNA编码基因簇进行删除及工程化改造,并利用修改后的重复单元在基因组多个位点重建了核糖体RNA编码基因簇。“该工作奠定了未来对其他超大、结构超复杂的基因组进行设计与编写的基础,同时也证明了酵母基因组中rDNA(核糖体DNA)区域及其他序列均具有惊人的灵活度与可塑性。”戴俊彪表示。
深圳华大基因研究院与英国爱丁堡大学共同完成2号染色体的从头设计与全合成(长770 Kb),合成酵母菌株展现出与野生型高度相似的生命活性。
酵母人工染色体现实意义
酿酒酵母是第一个被全基因组测序的真核生物,大尺度的设计和重建酵母基因组是对目前酵母领域知识贮备的真实性、完整性和准确性的一个直接考验。化学合成酵母,一方面可以帮助人类更深刻地理解一些基础生物学的问题,另一方面可以通过基因组重排系统,使酵母实现快速进化,得到在医药、能源、环境、农业、工业等领域有重要应用潜力的菌株。
合成生物学(Synthetic Biology)是继“DNA双螺旋发现”和“人类基因组测序计划”之后,以基因组设计合成为标志的第三次生物技术革命。生物学界内最重要的分类依据,既不是植物和动物,也不是多细胞和单细胞生物,而是以原核生物和真核生物来区分。细菌、病毒等原核生物的基因组相对简单,而动物、植物、真菌等等真核生物的基因(DNA)既丰富又复杂,通常会包含数亿至甚至数十亿碱基对信息。同时,作为遗传物质的DNA通常被分配到不同的染色体中,而这些染色体又深藏在细胞核的特定区域。所以,合成一个真核生物的基因组是一项非常艰巨的任务。但是,如果生物学真正做到引领技术革命,合成真核生物基因组技术必将发挥非常核心的作用。如果说病毒基因组的合成开启了基因组化学合成研究,那么原核生物和真核生物基因组合成研究的不断突破,则初步实现了化学全合成基因组对单细胞原核生物和真核生物的生命调控。
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报