分享好友 天南地北首页 网站导航

什么是拉普拉斯展开

网友 2023-09-08 17:04 · 头闻号教育培训

最佳答案:

在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。

详情介绍

在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。

中文名
拉普拉斯展开
外文名
Laplace expansion
别名
拉普拉斯公式
所属领域
数学
相关术语
拉普拉斯定理
应用学科
数学

拉普拉斯展开定义

在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个

矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的 n个元素的

余子式的和。行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵Bnn列,它的拉普拉斯展开一共有 2n种。拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。

拉普拉斯展开公式

设B= (bij)是一个n×n矩阵。B关于第i行第j列的余子式Mij是指B中去掉第i行第j列后得到的n−1阶子矩阵的行列式。有时可以简称为B的

余子式。B的

代数余子式:Cij是指B的

余子式Mij与(-1)的乘积:

Cij= (−1)Mij

拉普拉斯展开最初由范德蒙德给出,为如下公式:对于任意i,j∈ {1, 2, ...,n}:

考虑以下的矩阵:

这个矩阵的行列式可以用沿着第一行的拉普拉斯展开式来计算:

也可以用沿着第二列的拉普拉斯展开式来计算:

很容易看到这个结果是正确的:这个矩阵是奇异的,因为它的第一列和第三列的和与第二列成比例,因此它的行列式是零。

拉普拉斯展开证明

B是一个

的矩阵,

。为了明确起见,将

的系数记为

,其中

考虑B的行列式|B|中的每个含有

的项,它的形式为:

其中的置换τ ∈Sn使得τ(i) =j,而σ ∈Sn-1是唯一的将除了i以外的其他元素都映射到与τ相同的像上去的置换。显然,每个τ都对应着唯一的σ,每一个σ也对应着唯一的τ。因此我们创建了Sn−1与{τ∈Sn:τ(i)=j}之间的一个双射。置换τ可以经过如下方式从σ得到:

定义σ' ∈Sn使得对于1 ≤kn−1,σ'(k) = σ(k)并且σ'(n) =n,于是sgnσ' = sgn σ。然后

由于两个轮换分别可以被写成

个对换,因此

因此映射σ ↔ τ是双射。由此:

从而拉普拉斯展开成立。

拉普拉斯展开相关定理

拉普拉斯定理

拉普拉斯在1772年的论文中给出了行列式展开的一般形式,称为拉普拉斯定理。拉普拉斯定理建立在子式和余子式的基础上,说明了如果将B关于某k行的每一个子式和对应的代数余子式的乘积加起来,那么得到的仍然是B的行列式。定理的证明与按一行(一列)展开的情况一样,都是通过建立置换间的双射来证明两者相等。

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
打赏 0
更多相关文章

收藏

点赞