分享好友 天南地北首页 网站导航

扩音机是因为什么原理扩音的?

网友发布 2023-08-25 10:28 · 头闻号仪器机械

放大器的原理,用二极管和电容等电子原件,通过一定的组合,把微信号放大,就是扩音器的原理。 扩音器的工作原理 分 以下几部分: 第一,阻抗匹配电路 第二,前置放大电路 第三,功率防大电路 第四,阻抗匹配或功率匹配 说穿了就是 当然是把接收进来的信号.经过电子元件的组合.把信号放大. 经过功力晶体再把放大的信号.透过扬声器放出声音.其动作原理是把电气讯号转换为声音讯号的转换器。扬声器为电子产品之声音输出端的重要零组件,其应用范围广泛,可装置於各型耳机或头机内,如随身听、音响、无线电通讯、多媒体电脑、录音工程或电子字典,用来收听声音与音乐,也可装置於电话自动拨话器,用来打电话。 1. 惮性支座 惮性支座是连接振动膜与支架的部分.它由弹性物料造成,一方面固定振动膜,另一方面容许振动膜有轻微振动. 2. 支架 支架由金属造成,作用是支撑起振膜,线圏等软弱的部分. 3. 振动膜 振动膜一般是由纸,塑料或金属所制造的,线圈与振动膜相连,当线圏振动时便会带动振动膜一起振动时,然后推动了周围的空气。振动的空气,变成声音. 4. 永久磁石磁石分为南北两极,南北两极的存在便会在该位置造成一个永久的磁场.在这磁场内,同极会相拒,异极会相吸. 5. 线圈 一条导电的金属线围绕成线圏后,一经通电便会造成电磁场,电磁场和磁石造成的磁场大致相同.但电磁场石是暂时性的,而且当电流的方向改变时,磁场的方向亦会改变. 在音箱中的永久磁石造成一道永久磁场,电流流过线圏时,线圏的电磁场或会和永久磁场相吸,又或会和永久磁场相拒.当电流方向改变时,磁场方向亦会对换.相吸的变成相拒,相拒的变成相吸.即每次电流方向改变时,线圏都会振动一下. 高低音的分别在於,空气每秘振动的次数,即频率.如现在要播放 C 调 (频率为 256 Hz,即每秒振动256次),唱机就会输出256 Hz的交流电,换句话说,在一秒钟内电流的方向会改变 256 次。每一次电流改变方向时,电磁铁上的线圈所产生的磁场方向也会随著改变。线圈的磁极不停地改变,与永久磁铁一时相吸,一时相拒,产生了每秒钟 256次的振动。 6. 中心盘 中心盘由环状弹性物料造成.它的所用是在上下左右平面上固定线圈,但又需让线圏可以前后振动.所以它被设计成风琴形,在平面上有如弹簧,给线圏一定压力.在线圏前后移动时,它又可向前后稍微伸展,不防碍线圏振动. 7. 防尘盖 盖著线圏的中心,防止尘粒掉入. 8. 电线 电线与线圏相连,红黑两线的正负极不断交替更换,改变线圏的磁场,线圏前后移动带动振动膜振动,产生声音. 9. 音箱 音箱有多个作用.首先,它可把扬声器内的各部分固定及保护防止它们移位.第二,音箱可吸收扬声器的振动,如我们把扬声器的主体放在桌上,桌子会和扬声器一起振动,吸去扬声器的声音.第三,当振动膜在振动时,它不单振动前方的空气,振动膜后方的空气亦会同时被振动.音箱内的声波会由反射管道发方出外,倍大声音. 10. 反射管道 音箱内的声波会由这里向外反射,倍大声音. 11. 控制电路板 我们在家中所用的交流电的频率是50Hz的,即每秘钟转换五十次.在播放声音时,我们需要不停的把频率变化.控制电路板的角色便是读取所需的频率,然后控制输出交流电的频率.造出不同的音效. 12. 可变电阻 当你改变扬声器声音的大小时就是在调节电路内的电阻,电阻上升时,电流会减弱,导至线圏的振动减弱。相反当你把调低时,电流会增加,线圏的振动增强,声音便会加大。 当讯号由讯号源(如DVD拨放机读取光碟片讯号) 经过扩大机放大电流(真空管扩大机则是放大电压), 来到喇叭的音圈,依右手安培定理导线通过电流周围则产生磁场, 当音圈通过电流,产生磁场时, 与喇叭的磁铁的固定磁场,产生同性相斥,异性相吸,产生震动. 音圈的音圈管连接胴体,胴体则依佛莱明左手定理产生运动, 胴体震动空气发出声音.胴体越大频率则可以越低.

一、胆机电路的基本组成:

1,电源供给:

(1)电源变压器是一种通过电磁的作用把交流电压升高或降低的器件,它担负着整机电源能量的供给。要求它:所供给每级负载的电压值要准确、稳定,允许偏差不得超过所需值的 5% ,带负载的能力要强,电源内阻要小,即使负载工作在峰值状态时电压也应该保持不变或基本不变。在长时间工作时,不得有过热、振动或其他异常现象。电源变压器在整机担负着重要使命,它的品质优劣直接影响了放大器的安全性稳定度以及信躁比、动态范围的指标。使用在胆机中的电源变压器,大多以环型、E I型、C 型等种类,这几种铁芯对功率的转换效率有所不同,在设计和运用时应加以注意。

(2)整流器是利用二极管的单向导电特性,把交流电压转换为脉动的直流电。它可分为电子管整流和晶体管整流。

电子管整流分为半波整流(图 1 .1 )和全波整流(图 1 .2 )。电子管全波整流需要两个高压绕组,还要一组电流较大的整流管灯丝电压,这样增加了变压器的功耗;半波整流器效率低,在胆机电路里只适用于电流波动较小的栅极电路里。由于电子管自身的特性(内阻较大、热损消耗大),所以现在商品机大多不采用。当然也有追求纯胆(无半导体器件)放大器的发烧友仍在使用。

晶体管整流则分为半波整流(图 1.3),全波整流(图 1.4 ),桥式整流(图 1.5)及倍压整流(图 1.6 )。桥式整流和全波整流则以效率高(输出的电压是交流电压有效值的 0.9 倍)、内阻小(压降 0.7 伏)、反应速度快,桥式整流只需一个高压绕组等优点。目前使用较为广泛。

(3)滤波器是把经过整流后的脉动直流电变为较平稳的直流电。它的电路组成有;

单只电容式又称C 型滤波器(图 2 .1);即在负载两端并联一只容量较大的电容器,这种滤波器的滤波效果与电容器的容量、负载电流大小有关,容量越大它所储存的电荷能量就越大,释放给负载的能量越大;相反,电容量越小,加在负载两端的脉动成分越大。它还和负载电阻的大小有关,负载电阻越大滤波效果越好。由于电容容抗的原因,纹波频率高(电容器充放电的次数增加)滤波效果就好。但电容器的容量并不是可以无限的增大,过大的容量会造成在开机的瞬间因电容器充电电流过大损坏整流管或变压器绕组,况且电容器储存的电荷到达一定程度时,再增加容量已无任何实际意义了。

阻流圈(扼流圈)输入式滤波器又称 L - C 型滤波器(图 2 .2 ),这种滤波器由阻流圈与负载串联,电容与负载并联组成的。由于电容积累电流的波动,电感阻滞电流波动。加入了阻流圈后电感对交流所呈现的感抗甚大,使整流后的脉动成分大部分被阻流圈分取,同时在电容的作用下,输出给负载两端的电压较为纯净。

电容输入式滤波器又称Π型滤波器也称CLC型滤波器(图 2.3 );它是前两个滤波器的合成,这种滤波器吸收了 C 型,L-C 型的优点,滤波效果好,它输出的直流电压大约是输入交流电压有效值的 1.2 倍左右。由于电感抗及电感线圈内阻的作用下,输出的电压比较稳定,所以,是目前在胆机放大器中,使用最多的一种滤波器。电感的感抗越大滤波效果越好同时阻流圈的体积、重量也同样增加,内阻也会随着增加,取值应在 8 -10 H 较好。

阻容式滤波器(图 2.4 );由于电阻对交流电和直流电的阻力一样,电阻在此很难起到阻交流成分的作用。否则,就要加大电阻值,这样,电阻两端的电压降就大,同时增加的负载内阻。这种电路适合于使用电流较小的前置放大器电路。

(4)稳压器是能够将电源输出电压保持的数值不随负载电流的变化而变化。可以通过调整它的基准电压为负载提供所需的电压值。稳压器可分为电子管稳压器、晶体管稳压器。

电子管稳压器(图 3 .1)使用的是冷阴极充气式稳压管。所谓冷阴极,就是不需灯丝为阴极加热,无热损功耗。工作时,稳压管内会产生紫红色的辉光并随着输出电流的大小而闪烁。它的使用也较灵活,既可以单只或多只串联(图 3 .2)以达到负载所需电压值,也可以并联(图3.3)向负载提供两稳压管之和的电流。电子稳压管有品种型号较少、体积大、稳定电流小等缺点。

(图 3.4)是晶体管简单的串联型稳压器。它是在单管稳压的基础上增加了一只电压调整扩流管。它有输出的纹波系数小、内阻小、输出电流较大、体积小、电路简单使用方便等优点。在胆机电路里,稳压器主要供给电压放大和推动倒相及功率管屏栅极等电路里。不过,在目前商品机中使用稳压器的极少(可能是由于增加了半导体器件会缺少“胆”味)。

(5)灯丝电路同样非常重要使用不当会引起50赫兹的交流声,图4.1、4.2、4.3、是处理交流灯丝噪音的几种通用接法。图4.4是直流灯丝电路,主要用在前放放大管电路,虽然它能有效的克服由灯丝产生的交流声,但由于使用了一套直流电源电路则容易出现直流转换速率慢,使用不当还容易出现100赫兹的交流声或由于增加了电源电路的元件引起噪音。

(6)高压延时保护器它是为了让放大管在得到了充分预热状态下,才接通高压。在刚开机时,阴极没有得到充分的预热而阳极就开始吸收电子,这样会加速电子管的老化。由于胆机机箱内的温度较高,尽量不要使用象 555 时基控制电路,它的可*性较差。在使用继电器延时,因为触点打火或自然氧化会引起触点电阻增大或接触不良,这样对高压的传导更为不利。在实际应用中,使用旁热式阴极功率管的放大器无需加延时器,实在有必要,非用不可时不如直接将高压、低压用开关分别控制。如果碍于面板美观,可不设低压开关,则更方便、可靠。

为了提高放大器的部分性能指标,改善胆机的解析力,在前置电路也可以使用开关电源供电。现在市场上有 21 寸彩电用的开关电源出售,价格低、体积小、重量轻只要将开关变压器线圈匝数稍加改动即可。这种高频电源的特点是:电压波动小、纹波小、反映速度快、能量的转换效率高。缺点是:声音不及使用工频电源更具音乐化,可*性较低。但信噪比高,作为一种新的尝试有动手能力的朋友不妨一试。 7,功率管屏栅极的三种接法:束射四极功率管屏栅极(也称帘栅极)的工作状态不同,对阳流的大小、失真度、输出功率、声音的表现等都有影响。

(1)三极管接法(图8.1):它是将屏栅极接在阳极上让屏栅极 100% 的接受输出电压的反馈。这种接法的特点是:内阻低、谐波失真小、阻尼系数高、声音恬美。但阳极的转换效率低,输出功率小。

(2)标准接法(图7.2):是将屏栅极接在电源供给电路里(称为次高压电源)。这种接法失真较三极管接法大,阻尼系数稍差,输出功率大。由于失真大的原因,这种电路在现在的商品机中极少使用。其实标准接法的缺点通过调整电路可以解决。

分析其原因是:束射四极管在使用时,一般是将屏栅极的工作电压取自阳极高压,通过电阻降压,为其提供工作电压。而屏栅极在动态时有几瓦的输出功率,所以它的电流变化较大,在降压电阻两端会产生随动态屏栅流变化较大的电压降。这样供给屏栅极电源的内阻增大所以,在动态时帘屏栅极信号电压瞬态互调失真陡增。由于屏栅极对于阳极来讲是一个控制栅极(帮助阳极吸收电子),屏栅极使用工作电压的高低对阳流影响极大,它的失真直接影响了阳极电流的变化并且它对于直流电源的纯净度要求也非常高。瞬态互调失真在感觉上类似于交越失真甚至感觉到高端出现了尖峰的脉冲信号,它给人烦躁、吵闹、“金属声”等不愉快的感觉,它的变化使动态时输出的波形有毛刺、不圆滑,这就是平常所说的标准接法不好听及失真大的主要原因,它是把标准接法直接打入“冷宫”的“罪魁祸首”。目前对于怎样使用束射四极管、五极管屏栅极的概念非常模糊,有的烧友焊了几年的机子、用了几年的管子竟不知帘栅极的作用。所以正确选取帘栅极的工作点非常重要(尤其是标准接法)。

解决的办法是:专用一组次高压以CLC型滤波较好,用稳压电源或者取直流高压用稳压电源接一适量的退偶电容为其供电。使用这种电源,放大器的性能有了很大的提高,失真减少、反映速度加快、控制力和阻尼系数都有了很大的改善。

超线性接法(图8.2):它是将阳极电压取部分通过输出变压器反馈给帘屏栅极。由于三极管接法功率管阳极转换效率低,标准接法波幅失真较大,这样就又出现了中庸的超线性接法,它对声音的表现和功率管阳极转换效率介于三极管接法和标准接法之间,目前被广泛应用。超线性接法的出现的确在胆界掀起了对胆机又一次改进高潮,使人们对电子管放大器有了新的认识。但随着时间的推移,电子管放大电路的进一步成熟、元器件质量的更新、软件录制水平的提高,HI-FI的标准已经满足不了当前发烧友们对放声设备指标更高素质的追求,不得不对超线性接法又有了新的认识,它的动态欠佳、反映速度慢、镜像也不如另外两种接法的清晰度高,解析力稍差等问题也暴露出来了。

对于这些问题也许是由于每个人对音乐的理解不同,感受不一样,对放大器声音表现的接受程度也不相同,对一些电路的认识自然也不相同。对于电子管放大器来讲指标只是某一参数的数据,它的实际听感与指标数据相差很大。电子管放大器的总体指标不及晶体管放大器而正是它对声音表现有着独有的韵味表现,取得了大家的一致赞同。而有些人则认为胆机的低频就应该是懒洋洋、松塌塌的感觉。其实这种理解应该是错误的,这是因为放大器的控制力、阻尼系数差,甚至是二次谐波产生的失真。而一台上好的电子管放大器的低频控制力、中频的通透度、高频的解析力绝不会差于晶体管放大器。一位真正明智的发烧友应该在电路上多下工夫,充分利用电子管自身特性发挥其长(比如:给屏栅极用固定稳压的纯净电源),克服其短。

超线性接法只能说是对于屏栅极的使用技巧,没有真正达到改变屏栅极失真的目的。这只是笔者以个人的制作经验和对超线性接法的听觉感受及身边部分同行对超线性接法的认识(仅代表个人意见)。再此,绝对没有贬低超线性接法的意思。毕竟它是多年来使用的一个成熟电路,也许是笔者对它使用经验不足的问题而产生接受上的不同。

8,输出电路:功率放大输出端是变压器偶合至负载。由于功率管的输出阻抗很高,负载阻抗很低,两者的阻抗相差甚远。如果直接将功率输出接到负载上,将会出现严重的阻抗失配,所以必须使用变压器来变换阻抗传递功率。要使功率放大的最大输出完全传递给负载,则必须达到两者的阻抗匹配值。输出变压器初级反射的阻抗是否是功率管阳极的最佳负载阻抗值,它取决于输出变压器初级与次级的匝数比及次级所接负载的阻抗值。它们之间阻抗是否匹配及变压器绕制的工艺、取材是否良好,对于整机的性能指标起着很大程度的作用。

输出变压器的品质对整机性能指标及听感均有很大的影响,目前制作上乘输出变压器的频宽在10Hz-30KHz,失真在0.5%以下应该是没有什么问题,这也就是说输出变压器在目前已不是影响胆机指标的关键器件。但是变压器绕制的工艺及使用的材料对整机声音的影响还是较大的。输出变压器频带适当的超出HI-FI(20HZ-20KHZ)标准对于频响的扩展是有利的。但是,输出变压器的指标超过一定的范围后,就无须再过于追求更高的指标范围。如果放大器在电路设计和制作时元器件及引线的摆位有缺陷或电路存在自激振荡现象,则因输出变压器过低下限频率就很可能出现低频震荡,造成放大器的阻尼系数及控制力差。过高的上限频率则容易出现超声频寄生震荡,严重时还会烧毁输出变压器或音箱高音单元。现在有许多厂家对输出变压器公布的参数指标已经从5赫兹至100K赫兹,这是由于测试的标准不同以及商业上的需要,所以在购置或使用时应加以区别。

9,反馈(回输):将放大器输出的信号电压或电流取其部分值,通过一定的电路返回到输入电路。反馈有电压反馈、电流反馈。电压反馈是:反馈信号强度、大小与输出信号电压成正比。电流反馈是:反馈信号强度、大小与输出的信号电流成正比。它们又分为正反馈和负反馈两种形式。反馈信号与原输入信号相位相同,称正反馈,它能够使输入的有效信号增强,提高了放大器的放大倍数但,反馈量达到一定值时,会使放大器产生自激震荡,啸叫,严重时会损坏放大器及音箱;反馈信号与原输入信号的相位相差180度,称为负反馈。它能使输入的有效信号减弱,减小了放大器的放大倍数。在音频放大器内所使用的大多是负反馈。

负反馈的特点:能减小因非线性元件引起的非线性失真,能减小放大器的放大倍数,能提高放大器的工作稳定度,能改变放大器的输入输出阻抗,能改善放大器的幅频特性,能减小躁声电压减小幅频失真。在一定范围内负反馈越深,改善放大器的性能指标越明显,但超过一定的范围内(过深)的负反馈一样能引起放大器的自激、振荡或其他不稳定的情况。

其实,使用负反馈主要是用来对付由于电路设计是的先天性不足,主要是由元器件引起的非线性失真,印刷电路板或搭棚时的线路走向之间相互干扰,级间增益失配等人为存在的问题。这些问题可以通过调整电路,改善放大管电路周围的工作环境,使其工作在无人为的恶劣工作环境,这对于改善放大器性能指标有着积极的意义。虽然负反馈能够改善、提高放大器的某些指标值但,它对声音的表现则出现了相反的一面,负反馈越深声音的瞬态表现、开阔度、清晰度越差,低频打结缺少层次感,高端细小微弱信息丢失越多,难怪“能听失真5%的无负反馈放大器不听失真1%的有负反馈放大器。所以在引用负反馈时应尽量先在电路上下工夫调整其最佳工作状态,尽可能使用少量或不用负反馈。

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
打赏 0
更多相关文章

收藏

点赞