分享好友 天南地北首页 网站导航

集成电路可靠性面临的挑战|集成电路可靠性

网友发布 2023-08-06 15:42 · 头闻号仪器机械

集成电路可靠性介绍

ocean 发表于: 2008-7-21 20:59 来源: 半导体技术天地

集成电路可靠性介绍

半导体国际: 中芯国际集成电路制造有限公司(SMIC) 韩强 简维廷 黄宠嘉

可靠性的定义是系统或元器件在规定的条件下和规定的时间内,完成规定功能的能力。从集成电路的诞生开始,可靠性的研究测试就成为IC 设计、制程研究开发和产品生产中的一个重要部分。

Jack Kilby 在1958年发明了集成电路,第一块商用单片集成电路在1961年诞生;1962年9月26日,第一届集成电路方面的专业国际会议在美国芝加哥召开。当时会议名称为“电子学失效物理年会”;1967年, 会议名称改为“可靠性物理年会”;1974年又改为“国际可靠性物会议”(IRPS) 并延续至今。IRPS 已经发展成集成电路行业的一个盛会,而可靠性也成为横跨学校研究所及半导体产业的重要研究领域。

集成电路可靠性评估体系

经过四十多年的发展,集成电路的可靠性评估已经形成了完整的、系统的体系,整个体系包含制程可

靠性、产品可靠性和封装可靠性。

制程可靠性评估采用特殊设计的结构对集成电路中制程相关的退化机理 (Wearout Mechanism)进行测试评估。例如,我们使用在芯片切割道(Scribe Line)上的测试结构来进行 HCI ( Hot Carrier Injection) 和

NBTI (Negative Bias Temperature Instability) 测试,对器件的可靠性进行评估。

产品可靠性和封装可靠性是利用真实产品或特殊设计的具有产品功能的TQV (Technology Qualification Vehicle) 对产品设计、制程开发、生产、封装中的可靠性进行评估。

集成电路可靠性工作者的主要任务

可靠性定义中“规定的时间”即常说的“寿命”。根据国际通用标准,常用电子产品的寿命必须大于10年。显然,我们不可能将一个产品放在正常条件下运集成电路可靠性介绍行10年再来判断这个产品是否有可靠性问题。可靠性评估采用“加速寿命测试 ”(Accelerated Life Test, ALT)。把样品放在高电压、大电流、高湿度、高温、较大气压等条件下进行测试,然后根据样品的失效机理和模型来推算产品在正常条件下的寿命。通常的测试时间在几秒到几百小时之内。所以准确评估集成产品的可靠性,是可靠性工作者一个最重要的任务。当测试结果表明某一产品不能满足设定的可靠性目标,我们就要和产品设计、制程开发、产品生产部门一起来改善产品的可靠性,这也是可靠性工作者的另一重要职责。当产品生产中发生问题时,

对产品的可靠性风险评估是可靠性工作者的第三个重要使命。

为了达成这三项使命,我们必须完成以下6个具体工作:

1)研究理解产品失效机理和寿命推算模型;

2)设计和优化测试结构;

3)开发和选择合适的测试设备、测试方法和程序;

4)掌握可靠相关的统计知识,合理选择样品数量和数据分析方法;

5)深入了解制程参数和可靠性之间的关系;

6)掌握失效分析的基本知识,有效利用各种失效分析工具。

这6个方面的工作相互影响依赖。对失效机理和生产制程的理解是最基本的,只有理解,才能设计出比较合适的测试结构,选择适当的测试与数据分析方法,并采用合适的寿命推算模型,以做出准确的寿命评估。只有深入理解制程参数和失效机理之间的互相关系,才能有效地掌握方向、订下重点、分配资源,

来改善产品的可靠性。

集成电路可靠性面临的挑战

九十年代以来,集成电路技术得到了快速发展,特征尺寸不断缩小,集成度和性能不断提高。为了减小成本,提高性能,集成电路技术中引入大量新材料、新工艺和新的器件结构。这些发展给集成电路可靠

性的保证和提高带来了巨大挑战。

1) 随着特征尺寸的缩小,工艺中的一些关键材料已接近物理极限,其失效模型发生了改变,这对测试方法以及寿命评估都带来了严峻挑战。同时,一部分失效机理的可靠性问题变得非常严重。例如NBTI 报道于1966年,对较大尺寸的半导体器件,其对性能影响并不大;然而随着器件尺寸的减小,加在栅极氧化层上的电场越来越高,工作温度也相应提高,器件对工作阀值电压越来越敏感,NBTI 已成为影响集成电路可

靠性的关键问题。

2 )新材料和新工艺的引入导致了新的可靠性问题。例如为了减小金属互连对器件速度的延迟,低k 和超低k 介质被引入到金属互连制程中。由于其机械、电学和热学性能远远低于传统的二氧化硅材料,Vbd (Breakdown Voltage)和TDDB (Time Dependant Dielectric Breakdown) 寿命,以及由低k 材料和高密度倒装芯片封装引起的新失效机理CPI (Chip Package Interaction)已成集成电路可靠性的制约因素。

3 )尺寸的缩小和集成度的提高对可靠性的测试带来了挑战。尺寸缩小导致对ESD (Electrostatic Discharge )变得更加敏感。封装测试中的E S D问题会严重影响可靠性评估的成功率和准确性。集成度的提高也使一些常规可靠性评估因时间变长而显得非常困难。如4G Flash记忆体的传统100K 耐久性测试会

超过2千小时, 严重影响新制程可靠性评估的及时完成。

结论

集成电路的快速发展,给可靠性保证带来了巨大的挑战。集成电路工作者要进一步深入研究可靠性物理和失效机理,加强可靠性工程相关工作;同时也要和产品设计、制程开发和生产部门紧密合作,以减少可靠性对集成电路特征尺寸进一步缩小的制约,并保证产品保持足够的可靠性容限(Reliability Allowance)。

刘尚合:中国工程院院士、我国静电安全工程学科的奠基者和开拓者,全国科学大会奖、中国人民解放军专业技术重大贡献奖、中国静电研究与应用重大贡献奖和何梁何利基金科学与技术进步奖获得者,被评为全国优秀教师、全军优秀教员、全军英模代表,荣立一等功1次、二等功1次、三等功2次。

在他所研究的领域里面,刘尚和可谓是硕果累累,荣耀无数,但是谁又知道在这些荣耀背后他付出了什么?

晚上七点半回到家,刘尚合照例一头钻进了书房。正在做传统面食柿子饼的老伴赵香莲对此早已习以为常:“不知道时间,他根本不知道时间。”听了老伴的唠叨,刘尚合一笑了之。对他来说,如果生命中有个抹不去的符号,那一定是激情。

50多年的科研之路,心中不断涌动的激情让刘尚合忽略了时间,忽略了年龄。作为中国工程院院士、我国静电安全工程学科的奠基者和开拓者,刘尚合一直都在与一个“幽灵”战斗。这个“幽灵”叫静电,它来无影、去无踪,却频频扮演“杀手”角色,导致电发火装置及易燃易爆物意外发火、爆炸,令人防不胜防。刘尚合与静电结缘于30多年前。

1983年,在军械工程学院从事基础物理教学的刘尚合被国内外一连串由静电引发的伤亡惨剧所震惊。身为军人的刘尚合敏锐地意识到:“只有彻底攻克这一难题,追踪降伏静电这个‘幽灵’,才能真正确保武器弹药安全。”也就是那一年,刘尚合离开了奋斗10多年的半导体离子注入研究领域,踏上了追踪静电“幽灵”的科研之路。在一无科研资料、二无试验设备、三不懂弹药原理的情况下,选择“静电与弹药”这一危险而又陌生的科研领域,需要非常大的勇气。

回忆起当年的选择,刘尚合说:“为探索未知领域,我愿意重当一名小学生。”话虽这样说,但刘尚合永远不会忘记,那是一段怎样的艰难岁月:长时间处于超剂量有害气体和射线辐射的环境,让他的白血球值一度从正常的5000下降到2000;长期超负荷工作,让这个身高1米80的大高个儿体重锐减到60公斤……鏖战近千个日夜,刘尚合在防静电危害研究方面终于初露锋芒:在国内首次提出使用物理和化学方法相结合的材料改性技术,一举达到国际先进水平;撰写的论文《聚合物材料防静电改性研究》在国际学术会议上一鸣惊人,专家们一致认为该项研究开辟了人类防静电危害的新途径。在大量实验数据基础上,刘尚合首次提出了“信号自屏蔽——电荷耦合”动态电位测试原理,并和同事们一起成功研制出静电电位动态测试仪等5种仪器。

经过反复理论推算和仪器精密实验后,刘尚合得出的结果高于英美专家认定的数值。如何才能证明自己推测结果的科学性?只靠理论计算显然不行,动物皮毛实验又能否达到人体的效果?为了尽早打通科研瓶颈,刘尚合大胆提出对人体直接进行高电压实验,并提议由他自己亲身来完成。实验如期进行。助手们通过专门仪器,让电压从2万伏起步进入刘尚合的身体,他的头发、汗毛一根根竖了起来。4万、5万……已达到国外资料认定的最高值。助手们停了下来,但刘尚合却毫不犹豫指挥下令:继续加压。5.5万、6万、7万……静电电位测试仪的荧屏上显示,他身体上的静电电压已经达到7万1千伏。

刘尚合一边紧盯着仪器,一边镇定地指挥着助手,同事们的心都提到了嗓子眼儿。这是一个可以载入史册的时刻——人类首次测定并验证了人体静电电位的极端值!就这样,一次次无畏面对挑战,一项项成果相继问世,刘尚合也一步步登上国际静电研究领域的高峰。

弹药火工品在储存和运输过程中存在突燃突爆的“反常发火”现象,是困扰世界军事领域几十年的一道难题。而由刘尚合主持的“弹药防静电理论与技术研究”项目对解决这一道难题提供了决定性的帮助,为此他也获得了国家科技进步一等奖。就这样,一次次无畏面对挑战,一项项成果相继问世,刘尚合也一步步登上国际静电研究领域的高峰。

在旁人眼里有充分资本骄傲的刘尚合淡然一笑,在他看来,这不过是他全部科研工作中的一项。“作为一名科技工作者,同时也是一名军人,每一项科研工作都是一个必须完成好的战斗任务。”

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
打赏 0
更多相关文章

收藏

点赞