分享好友 天南地北首页 网站导航

零点极点的概念哪本书讲的好

网友发布 2023-08-01 04:55 · 头闻号仪器机械

工程电路分析基础。截止2022年11月28日,仅有工程电路分析基础书中将零点极点的概念进行了细致的划分和讲解,并配备了相应的,所以该书籍讲的好。零点是表示对某个频率的信号,输出响应为零。

零点、奇点和极点以及它们之间的关系是怎么样的?

z变换的零极点求法:实验二Z变换、离散系统零极点分布和频率分析,零极点并不包含常数的比例项,3+3x和1+x是一样的,所以需要z,p,k。

函数在这一点没有函数值或有函数值但不可导,其次,函数在这一点的极限值为∞。这也是它们的求法。比如f(z)=z/(1+z),定义域是z≠-1,函数是初等函数,在其定义区域内解析,所以不解析点是z=-1。当z→-1时,f(z)→∞,所以z=-1是极点。而f(0)=0,所以z=0是零点。

在物理学中

零极点最主要的作用是用来分析电路的频率特性,系统的稳定性。此外,还可以得出系统的时域响应等相关方面的参数。零极点本来就是用来描述电路特性的,在当频率在某个零点处,系统的幅值增益增加20dB/dec,在某个极点处减小20dB/dec,但其相位特性还得依据实际电路来决定。零极点分布图中:零点用圈儿表示,极点用叉表示。

零点是与函数的0有关的。极点是与函数的极有关的。极,极大值极小值的极,导数为0。而奇点是一种有着某种不好用常规方法处理点,通常看起来就是不容易用公式形式的函数来描述。

函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。

概念

在一个变化过程中,发生变化的量叫变量(数学中,变量为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。

自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
打赏 0
更多相关文章

收藏

点赞