判断腕表是否受到磁的方法
指南针:使腕表接近指南针。如果指南针强烈偏转,那手表就是受磁了。即使腕表没有磁性,腕表本身也是钢铁制的,所以腕表接近指南针时指南针也会微动,但偏转的程度很小。
此方法也可以用于检测存储腕表的地方是否有磁场。把指南针带到保管场所。指南针偏转时,附近有可疑的磁性物体。家里的钢铁材料工具,例如老虎钳等,在不知不觉中多接近磁性物体接受磁性。即使在腕表保管场所,也请远离这种磁性的工具。
腕表用消磁器消磁的方法
腕表消磁器通过交流电源产生交变磁场,对机械表的游丝进行消磁。打开电子管电视的时候也有消磁电路。也可以将腕表放在屏幕前,然后接通电源进行消磁。另外,也有肯定的消磁效果。一旦手表上磁就会忽然之间走的很快,甚至快1-2小时。注意平时安装机器腕表,远离音响、电视、手机等磁场。爱表受磁不用着急。首先把指南针放在表旁边,看看指南针是否有强烈的波动。如果的话就是受磁,相反没有受磁。
#小学奥数# 导语“手抄报”培养了学生动手、动脑的习惯,培养了他们的创新意识和创造能力,这正是时代的迫切需要。学生在课外阅读中积累的知识很多,要制成手抄报需要巧妙设计,精心安排,这就要求每个学生必须大胆设想,尤其是版面设计,根据内容添加图画,使版面图文并茂、活泼新颖,学生既陶冶了情操,又提高了审美能力和绘画技巧。以下是 无 整理的相关资料,希望对您有所帮助!
篇一
卡尔·弗里德里希·高斯的简介资料:
卡尔·弗里德里希·高斯是德国数学家、物理学家、天文学家、大地测量学家。和牛顿、阿基米德,被誉为有史以来的三大数学家,是近代数学奠基者之一,18岁时发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。1799年高斯于黑尔姆施泰特大学因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯的肖像已经被印在从1989年至2001年流通的10元面值德国马克的纸币上。
篇二
数学家高斯的故事资料
还在少年时代,高斯就显示出了他的数学才能。据说,一天晚上,父亲在计算工薪账目,高斯在旁边指出了其中的错误,令父亲大吃一惊。10岁那年,有一次老师让学生将1,2,3,…连续相加,一直加到100,即1+2+3+…+100。高斯没有像其他同学那样急着相加,而是仔细观察、思考,结果发现:
1+100=101,2+99=101,3+98=101,…,50+51=101一共有50个101,于是立刻得到:
1+2+3+…+98+99+100=50×101=5050
老师看着小高斯的答卷,惊讶得说不出话。其他学生过了很长时间才交卷,而且没有一个是算对的。从此,小高斯“神童”的美名不胫而走。村里一位伯爵知道后,慷慨出钱资助高斯,将他送入附近的的学校进行培养。
中学毕业后,高斯进入了德国的哥廷根大学学习。刚进入大学时,还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后,决定研究数学。卡斯特纳本人并没有多少数学业绩,但他培养高斯的成功,足以说明一名好教师的重要作用。
从哥廷根大学毕业后,高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长,并保留这个职位一直到他逝世。
高斯18岁时就发明了最小二乘法,19岁时发现了正17边形的尺规作图法,并给出可用尺规作出正多边形的条件,解决了这个欧几里得以来一直悬而未决的问题。为了这个发现,在他逝世后,哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。
篇三
卡尔·弗里德里希·高斯生平资料:
高斯有"数学王子"、"数学家"的美称、被认为是人类有史以来"最伟大的四位数学家之一"(阿基米德、牛顿、高斯、欧拉)。早年就*了18世纪数学的理论和方法,而以他自己革新的数论开辟了通往19世纪中叶分析严密化的道路。他不仅对纯粹数学作出了意义深远的贡献,而且对20世纪的天文学、大地测量学和电磁学的实际应用也作出了重要的贡献。他的名言︰「数学,科学的皇后;算术,数学的皇后」贴切地表达了他对数学在科学中的关键作用的感性认识。人们还称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过分。
高斯开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18─19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。
高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
父亲格尔恰尔德?迪德里赫对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。
在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。
在数学,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。她性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。
罗捷雅真地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,她也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。
7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。
一天,老师布置了一道题,就是那个的自然数从1到100的求和。当然,这也是一个等差数列的求和问题。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E.T.贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。
高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。
1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵卡尔?威廉?斐迪南召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。
1792年高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时─虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。
1806年,卡尔?威廉?斐迪南公爵在抵抗拿破仑统帅的法军时不幸在耶拿战役阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手稿中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。"
慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年莱昂哈德?欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着像高斯这样的天才。公爵在世时坚决劝阻高斯去*,他甚至愿意给高斯增加薪金,为他建立天文台。
为了不使德国失去最伟大的天才,德国学者洪堡(B.A.VonHumboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥廷根大学数学和天文学教授,以及哥廷根天文台台长的职位。1807年,高斯赴哥廷根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥廷根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥廷根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。
1827年他发表了《曲面的一般研究》,涵盖一部分大学念的“微分几何”。1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、洛巴切夫斯基,波尔约。其中波尔约的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小波尔约还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老波尔约把儿子的成果寄给老同学高斯,想不到高斯却回信道:我无法夸赞他,因为夸赞他就等于夸奖我自己。早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的数学家贝尔,在他著的《数学工作者》一书里曾经这样批评高斯:在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能比当今数学还要先进半个世纪或更多的时间。阿贝尔和雅可比可以从高斯所停留的地方开始工作,而不是把他们的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他方面去。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。
高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子FriedericaWilhelmine(1788-1831)。他们又有三个孩子:Eugen(1811-1896),Wilhelm(1813-1883)和Therese(1816-1864)。1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记发现于1898年。
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报