启动数据,选择指令源,频率给定源,最大频率,最小频率,加减速时间,V/F曲线。
变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。
因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。
一 加减速时间
加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
二 转矩提升
又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。
三 电子热过载保护
本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。
电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。
四 频率限制
即变频器输出频率的上、下限幅值。频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。
五 偏置频率
有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0Hz。
六 频率设定信号增益
此功能仅在用外部模拟信号设定频率时才有效。它是用来弥补外部设定信号电压与变频器内电压(+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10v、5v或20mA),求出可输出f/V图形的频率百分数并以此为参数进行设定即可;如外部设定信号为0~5v时,若变频器输出频率为0~50Hz,则将增益信号设定为200%即可。
七 转矩限制
可分为驱动转矩限制和制动转矩限制两种。它是根据变频器输出电压和电流值,经CPU进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。转矩限制功能可实现自动加速和减速控制。假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。
驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不会引起变频器跳闸。在加速时间设定过短时,电动机转矩也不会超过最大设定值。驱动转矩大对起动有利,以设置为80~100%较妥。
制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。如制动转矩设定为0%,可使加到主电容器的再生总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,应引起注意。
八 加减速模式选择
又叫加减速曲线选择。一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线;非线性曲线适用于变转矩负载,如风机等;S曲线适用于恒转矩负载,其加减速变化较为缓慢。设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S曲线后就正常了。究其原因是:起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功能的变频器所采用的方法。
九 转矩矢量控制
矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。矢量控制方式就是将定子电流分解成规定的磁场电流和转矩电流,分别进行控制,同时将两者合成后的定子电流输出给电动机。因此,从原理上可得到与直流电动机相同的控制性能。采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。
现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流大小和相位进行转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需在变频器的外部设置速度反馈电路。这一功能的设定,可根据实际情况在有效和无效中选择一项即可。
与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。这一功能主要用于定位控制。
十 节能控制
风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,而具有节能控制功能的变频器设计有专用V/f模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置为有效或无效。
要说明的是,九、十这两个参数是很先进的,但有一些用户在设备改造中,根本无法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。究其原因有:(1)原用电动机参数与变频器要求配用的电动机参数相差太大。(2)对设定参数功能了解不够,如节能控制功能只能用于V/f控制方式中,不能用于矢量控制方式中。(3)启用了矢量控制方式,但没有进行电动机参数的手动设定和自动读取工作,或读取方法不当。
伺服电机的加减速是如何控制的呢?谢谢!
vt230se变频器如何改为端子控制?变频器的外接端子及其控制功能:1? 变频器的控制功能:变频器运行的控制信号也叫操作指令,如起动、停止、正转、反转、点动、复位等。和频率给定方式类似, 变频器操作指令的输入方式也有:(1) 键盘操作即通过面板上的键盘输入操作指令。大多数变频器的面板都可以取下, 安置到操作方便的地方, 面板和变频器之间用延长线相联接, 从而实现了距离较远的控制, 如图1所示。图1 面板操作(2) 外接输入控制操作指令通过外接输入端子从外部输入开关信号来进行控制,如图2所示。图2 外接输入端子由于外部的开关信号可以在远离变频器的地方来进行操作,因此,不少变频器把这种控制方式称为“远控”或“遥控”操作方式。变频器在出厂时,设定的都是键盘操作方式,用户如需要采用外接输入控制,在使用前必须通过功能预置进行选择。1.2 变频器对外接输入端子的安排外接输入控制端接受的都是开关量信号,所有端子大体上可以分为两大类:(1) 基本控制输入端如运行、停止、正转、反转、点动、复位等。这些端子的功能是变频器在出厂时已经标定的, 不能再更改。(2) 可编程控制输入端由于变频器可能接受的控制信号多达数十种,但每个拖动系统同时使用的输入控制端子并不多。为了节省接线端子和减小体积,变频器只提供一定数量的“可编程控制输入端”,也称为“多功能输入端子”。其具体功能虽然在出厂时也进行了设置,但并不固定,用户可以根据需要进行预置。常见的可编程功能如多档转速控制、多档加/减速时间控制、升速/降速控制等;例如,艾默生TD3000系列变频器的多功能输入端子有8个(X1~X8)。而可以预置的功能有33种;安川CIMR-G7A变频器的多功能输入端子有10个(S3~S12),而可以预置的功能多达78种。2? 常用输入控制端的应用举例2.1 升速、减速功能(1) 功能含义变频器的外接开关量输入端子中,通过功能预置,可以使其中两个输入端具有升速和降速功能,称之为“升、降速(UP DOWN)控制端”。如图3所示,假设:将X1预置为升速端,X2预置为降速端。则:图3 外接升、降速控制当KA1闭合时,X1得到信号,变频器的输出频率上升;KA1断开时,输出频率保持(如需要,也可以不保持)。当KA2闭合时,X2得到信号,变频器的输出频率下降;KA2断开时,输出频率保持(如需要,也可以不保持)。升速控制端和降速控制端必须同时预置,如果只预置其中一个,则无效。利用外接升、降速控制信号对变频器进行频率给定时,属于数字量给定,控制精度较高。(2) 应用举例(a)代替外接电位器给定在变频器的外接给定方式中,人们习惯于使用电位器来进行频率给定,如图4(a)所示。图4 电位器给定与升、降速端子给定但电位器给定有许多缺点,诸如:·电位器给定是电压给定方式之一,属于模拟量给定,给定精度较差;·电位器的滑动触点容易因磨损而接触不良,导致给定信号不稳定,甚至发生频率跳动等现象;·当操作位置与变频器之间的距离较远时,线路上的电压降将影响频率的给定精度。同时,也较容易受到其他设备的干扰。利用升、降速端子来进行频率给定时,只需接入两个按钮开关即可,如图4(b)所示。其优点是十分明显的:·升、降速端子给定属于数字量给定,精度较高;·用按钮开关来调节频率,非但操作简便,且不易损坏;·因为是开关量控制,故不受线路电压降等的影响,抗干扰性能极好。因此,在变频器进行外接给定时,应尽量少用电位器,而以利用升、降速端子进行频率给定为好。(b) 两处升、降速控制在生产实际中,常常需要在两个或多个地点都能对同一台电动机进行升、降速控制。在大多数情况下,这是通过外接控制来实现的。·电路的构成如图5所示,SB1和SB2是一组升速和降速按钮,安装在控制盒CA内,由“频率表”FA显示其运行频率;SB3和SB4是另一组升速和降速按钮,安装在另一个控制盒CB内,由“频率表”FB显示其运行频率。控制盒CA和CB分别放置在两个不同的地方。图5 两地升、降速控制SB1与SB3并联,接在X1和COM之间,用于控制升速;SB2与SB4并联,接在X2和COM之间,用于控制降速。l 工作方式按下控制盒CA上的SB1或控制盒CB上的SB3,都能使频率上升,松开后频率保持;反之,按下控制盒CA上的“SB2”或控制盒CB上的“SB4”,都能使频率下降,松开后频率保持。从而实现了在不同的地点进行升速或降速控制。依此类推,还可以实现多处控制。基本原则是:所有控制频率上升的按钮开关都并联,所有控制频率下降的按钮开关也都并联就可以了。(c) 手动同步控制电路在纺织、印染以及造纸机械中,根据生产工艺的需要,往往划分成许多个加工单元,每个单元都有各自独立的拖动系统,如图6所示。在这种情况下,总是要求被加工物在各单元的线速度保持一致:v1=v2=v3图6 ?多单元同步运行显然,如果后面单元的线速度低于前面,将导致被加工物的堆积;反之,如果后面单元的线速度高于前面,将导致被加工物的撕裂。因此,要求各单元的运行速度能够步调一致,即实现同步运行。对手动同步控制的要求如下:首先,各单元要能够同时升速和降速,进行统调;其次, 在必要时,每个单元又能够单独地进行微调。今以三个单元的同步为例,控制电路如图7所示,工作过程如下:·统调统调的控制电路如图7(d)和图7(e)所示:图7 手动多单元同步控制按下SB1,继电器KA1得电,其触点分别将各变频器的X1-COM接通,各单元电动机同时升速;按下SB2,继电器KA2得电,其触点分别将各变频器的X2-COM接通,各单元电动机同时降速。·微调各台变频器分别由按钮开关SB11、SB12(1号机)、SB21、SB22(2号机)、SB31、SB32(3号机)进行单台微调。2.2 多档转速控制(1) 输入控制端的“多档速”功能(a) 功能含义变频器可以设定若干档工作频率,其频率档次的切换是由外接的开关器件改变输入端子的状态和组合来实现的。例如,当端子S1、S2、S3被预置为为多档转速的信号输入端时。通过继电器KA1、KA2、KA3的不同组合,可输入7档转速的信号,如图8(a)所示。转速档次与各输入端子状态之间的关系如图8(b)所示。图8 变频器的多档速控制端各档的工作频率(转速)究竟为多大,则根据需要进行预置。(b) 变频器的功能预置以东芝VF-A7系列变频器为例,如附表所示。由附表知, 功能预置分两个步骤:第一步:在输入控制端子中选择若干个端子(附表中为3个)作为多档转速输入控制端;第二步:预置各档转速的运行频率。(2) 多档转速的控制特点变频器在实现多档转速控制时, 需要解决如下的问题:一方面,变频器每个输出频率的档次需要由三个输入端的状态来决定;另一方面,操作人员切换转速所用的开关器件通常为按钮开关或触摸开关,每个档次只有一个触点。所以,必须解决好转速选择开关的状态和变频器各控制端状态之间的变换问题,如图9所示。图9 多档速控制特点针对这种情况, 通过PLC来进行控制是比较方便的。(3) 控制实例某生产机械有7档转速, 通过7个选择按钮来进行控制。(a) 控制电路 如图10所示,说明如下:图10 多档速的PLC控制电路l PLC的输入电路如图,PLC的输入端X1~X7分别与按钮开关SB1~SB7相接,用于接受7档转速的信号。l PLC的输出电路如图10, 输出端Y1、Y2、Y3分别接至变频器的输入控制端的S1、S2、S3, 用于控制S1、S2和S3的状态。(b) 梯形图之一(SB1~SB7为非自动复位型按钮开关) 如图11所示。图11 采用非自动复位按钮的梯形图观察图10中之端子状态表,可得到如下规律:S1在第1、3、5、7档转速时都处于接通状态,故:PLC的X1、X3、X5、X7中只要有一个得到信号,则Y1“动作”→变频器的S1端得到信号;S2在第2、3、6、7档转速时都处于接通状态,故:PLC的X2、X3、X6、X7中只要有一个得到信号,则Y2“动作”→变频器的S2端得到信号;S3在第4、5、6、7档转速时都处于接通状态,故:PLC的X4、X5、X6、X7中只要有一个得到信号,则Y3“动作”→变频器的S3端得到信号。今以用户选择第3档转速为例,说明其工作情况如下:按下SB3→X3“动作”→Y1和Y2“动作”→变频器的S1、S2端子得到信号, 变频器将在第3档转速下运行。(c) 梯形图之二(SB1~SB7为自动复位型按钮开关) 如图12所示。图12 ?采用自动复位按钮的梯形图由于SB1~SB7采用了自动复位型按钮开关,PLC输入端子X1~X7得到的信号不能保持,故借助PLC中的中间继电器M1~M7,使各转速档次的信号保持下来。今说明如下:按下SB1→X1得到信号→M1“动作”并自锁,M1保持第1转速的信号。当按下SB2~SB7中任何一个按钮开关(X2~X7中有一个得到信号)时→M1释放。即:M1仅在选择第1档转速时“动作”。按下SB2→X2得到信号→M2“动作”并自锁,M2保持第2转速的信号。当按下除SB2以外的任何一个按钮开关时→M2释放。即:M2仅在选择第2档转速时“动作”。以此类推:M3仅在选择第3档转速时“动作”; M4仅在选择第4档转速时“动作”;M5仅在选择第5档转速时“动作”;M6仅在选择第6档转速时“动作”;M7仅在选择第7档转速时“动作”。与图9类似:M1、M3、M5、M7中只要有一个接通,则Y1“动作”→变频器的S1端接通;M2、M3、M6、M7中只要有一个接通,则Y2“动作”→变频器的S2端接通;M4、M5、M6、M7中只要有一个接通,则Y3“动作”→变频器的S3端接通。今以用户选择第5档转速为例,说明其工作情况如下:按下SB5→X5得到信号→M5“动作”,同时,如果在此之前M1、M2、M3、M4、M6、M7中有处于动作状态的话,都将释放→Y1、Y3“动作”→变频器的S1、S3端子接通,变频器将在第5档转速下运行。3? 输出端子及其应用举例变频器除了用输入控制端接受各种输入控制信号外,还可以用输出控制端输出与自己的工作状态相关的信号。输出控制端子有跳闸报警输出端(开关量)、测量信号输出端(模拟量或脉冲)以及可编程输出端等几种类型。3.1 跳闸报警输出(1) 功能与特点当变频器因发生故障而跳闸时,发出跳闸报警信号。主要特点如下:(a) 功能单一报警输出的控制端子是专用的,不能再作其他用途。所以,跳闸报警输出端子不需要进行功能预置。(b) 继电器输出所有变频器的报警输出都是继电器输出, 可直接接至交流250V电路中,触点容量大多为1A, 也有大至3A的。大多数变频器的报警输出端都配置一对触点(一常开、一常闭),如图13中的A-C、B-C所示;图13 ?跳闸报警电路示例(2) 应用示例如图13所示,动断(常闭)触点C-B串联在接触器KM的线圈电路内; 动合(常开)触点C-A则串联在声光报警电路内。变频器的通电由接触器KM控制,当变频器跳闸时:一方面,动断(常闭)触点C-B断开,KM线圈失电,其触点断开,使变频器切断电源;另一方面,动合(常开)触点C-A闭合,电笛HA和指示灯HL同时得电,进行声光报警。在配置声光报警的情况下,须注意将变频器控制电源的接线端(R1和S1)接至接触器KM主触点的前面。3.2 测量信号输出端变频器的运行参数(频率、电流等)可以通过外接仪表来进行测量,为此,专门配置了为外接仪表提供测量信号的外接输出端子,如图14所示。需要预置的相关功能主要有以下几个方面:图14 测量信号输出端子(1) 测量内容的选择功能变频器的外接测量输出端子通常有两个,用于测量频率和电流。但除此以外,还可以通过功能预置测量其他运行数据,如:电压、转矩、负荷率、功率,以及PID控制时的目标值和反馈值等。(2) 输出信号的类别(a) 电压信号输出信号范围有0~1V、0~5V、0~10V等几种。多数变频器直接由模拟量给出信号电压的大小,但也有的变频器输出的是占空比与信号电压成正比的脉冲序列。(b) 电流信号其量程主要是0~20mA、4~20mA两种,但也有量程为0~1mA的。(c) 脉冲信号输出信号为与被测量成比例的脉冲信号,脉冲高度(电压)通常为8~24V,这种输出方式主要用于测量变频器的输出频率。(3) 量程的校准功能因为外接仪表实际上是电压表或毫安表,而被测量是频率、电流或其他物理量,因此,有必要对量程进行校准。校准的方法主要有两种:(a) 通过功能预置来校准;(b) 通过外接电位器来校准,如图14(b)所示。(4) 应用示例某机械,最高运行频率为80Hz,所选变频器是三菱FR-A540型。(a) 输出信号特点三菱FR-A540系列变频器的模拟量输出端子只有一个,符号是“AM”,负端为“5”,如图15(a)所示,输出信号为0~10V直流电压信号。图15 模拟量输出示例(b) 功能预置需要预置的功能如下:l 选择AM端的测量内容将功能码Pr.158预置为“1”,则AM端将显示变频器的输出频率;l 预置测量范围将功能码Pr.55预置为“80”,则频率显示范围为0~80Hz。AM端的输出电压与显示频率之间的对应关系如图15(b)所示。(c) 仪表的改造因为AM端的输出电压范围是0~10V,所以,只需购买量程为10V的直流电压表即可。但须将面板修改为0~80Hz,如图15(c)和15(d)所示。3.3 可编程输出端可编程输出端也叫状态输出端。用于输出表明变频器各种工作状态的信号,都是开关量输出。各输出端子的具体功能须通过功能预置来决定,主要有:变频器运行中、频率到达、输出频率到达上限、输出频率到达下限、程序运行换步信号、程序运行一次循环结束信号、程序运行步数指示等。(1) 电路结构主要有两种类型:(a) 继电器输出型变频器内部具有若干个输出继电器,通过其触点输出相关信号,如图16(a)所示。多数情况下,只能用于直流低压电路中。也有的继电器触点可以用在交流220V的电路中的,须注意阅读说明书。(b) 晶体管输出型变频器内部是晶体管集电极输出,如图16(b)所示。这种输出方式只能用在直流低压电路中。由于晶体管只能单方向导通,使用时须注意外接电源的极性。图16 可编程输出电路(2) 应用实例有一台搅拌机,需要和传输带进行联动控制。搅拌机由电动机M1拖动,转速由变频器UF1控制;传输带由电动机M2拖动,转速由变频器UF2控制,如图17所示。图17 搅拌、传输联动控制控制要求如下:为了防止物料在传输带上堆积, 传输带应首先起动, 并且其运行频率到达30Hz以上时, 搅拌机才开始起动和运行;当变频器UF2的输出频率低于25Hz时, 搅拌机应停止工作。今以选用富士G11S变频器为例,选择输出端子Y2作为频率检测信号端,如图17所示。则变频器UF2须预置如下功能:功能码E21(Y2输出端子的功能)预置为“2”,则Y2为“频率检测”信号输出端;功能码E31(频率检测值)预置为“30”,则当输出频率高于30Hz时,Y2晶体管导通;功能码E32(频率检测滞后值)预置为“5”,则当输出频率降至30Hz时,Y2端并不恢复,等再滞后5Hz(即25Hz)时,Y2晶体管才截止,如图18所示。图18中: fS为频率检测的设定值;Δf为解除时的滞后值;fR为解除频率值。图18 频率检测含义
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸。
减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警。
然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
扩展资料:
服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。
伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。
交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。
百度百科--伺服电机
百度百科--加减速模式选择
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报