汽车继电器输入参量选择原则
汽车继电器的输入参量有:12VDC输入参量、24VDC输入参量、12VDC脉冲输入参量、24VDC脉冲输入参量。在选用时考虑以下参数:
线圈额定电压
线圈功耗
动作电压、释放电压
最大连续通电电流
线圈电阻
线圈温升
脉冲输入参量的脉宽(磁保持继电器)
输入参量选择关注:
1、环境温度:使用环境的温度和线圈的温升对动作电压的影响,一般分引擎舱(最高温度要求为125℃)和驾驶舱(最高温度要求为85℃);继电器线圈电阻随温度的变化而变化,这对继电器动作、释放电压的影响是明显的。温度每上升1℃,线圈电阻会上升4‰。当继电器线圈通电一段时间后,线圈发热。这时进行继电器触点切换动作,其动作电压高于冷态动作电压。
2、动作电压:用晶体管和集成电路驱动继电器时,注意晶体管和集成电路电压的压降和继电器线圈反电势对晶体管和集成电路的破坏作用。
3、线圈额定电压:在继电器常开触点闭合后,一般要求线圈上应施加最低动作电压以上的电压,汽车继电器不推荐使用低保持电压,因为会减弱产品抗振性,在汽车剧烈颠簸时可能会发生误动作。
4、线圈最大工作电压:汽车继电器为满足低动作电压的要求(60%额定电压),一般设计功耗较高,长期施加在线圈上的电压值,一般应小于120%额定电压,若需达到130%额定电压及以上值时,需与继电器生产厂家联系,取得技术支持。特别在高温下使用,会造成线圈温度过高,老化加速---最终线圈绝缘层损坏,匝间短路而失效。
5、释放电压:汽车继电器释放电压一般为10%额定电压,当线路上剩余电压过大,会造成继电器不释放。
四、输出参量
继电器输出参量选用时应考虑以下参数:
触点组数
触点形式
触点负载
触点材料
电气寿命、机械寿命
1、负载类型
国内大多数继电器负载能力,只标最大纯阻性负载,这给用户在选择继电器负载时,产生二种误解,导致选型失误。误解之一是:用户实用的往往不是纯阻负载,而是感性的、灯的、电机的或容性的负载,负载大小等同或接近于阻性负载;误解之二是:负载可以从低电平到额定负载,均能适应。应该指出,能可靠转换10A阻性负载的继电器,不可转换10A的感性负载,不一定能可靠转换10mA的负载。因为不同性质负载条件下的电接触失效机理是截然不同的。
汽车系统电源采用的是直流,直流电压没有过零点,触点开断瞬间,即产生电弧,且由于外加电压持续保持,只有电弧被拉长,不能自持而熄灭。电弧热能会使触点严重烧损,直流电流总是朝一个方向流动,会引起触点材料转移加剧。
大多数汽车继电器负载能力,只标称阻性负载,但汽车继电器实际使用的往往不是阻性负载,而是感性负载、灯负载、电机负载,因存在较高的冲击电流,触点稳态负载大小应根据冲击电流的大小降额使用。
应该强调,触点故障是继电器失效的主要原因。触点在不同负载类型、不同负载大小条件的电接触特性、失效现象及失效机理是有差别的。下面分别进行说明
1)大灯负载
由于汽车大灯冷态电阻很小,接通瞬间的浪涌电流高达稳态电流的15倍。如此大的浪涌电流会使触点迅速烧蚀,甚至产生熔焊失效。
2)电机负载
电动机静止时输入阻抗很小,启动瞬间浪涌电流很大。当电动机启动后,产生内部电动势,致使触点电流趋于减小,关断时,触点间出现反电势,常常会引起拉弧,造成触点烧蚀。
3)感性负载
电磁铁接通瞬间会出现浪涌电流,关断时,贮存在电磁线圈中的电磁能通过触点间燃弧消耗掉,这将导致触点烧蚀,金属转移、粘接。
采用RC网络、二极管、压敏电阻等触点保护装置可减少触点的烧蚀。
4)低电平
低电平一般指开路电压为10~100mV,触点转换电流为微安级到10mA。由于吸附在触点表面的有机物、化合物难以在转换负载时消除,导致触点接触电阻大而不稳定,电流不稳定,触点压降递增,最终失效,在汽车继电器中一般选用通讯继电器来接通车载通讯,音响和GPS信号。
输出选择原则:
最大开断电压、最大开断电流、最大开断功率均不应大于规定值。
汽车继电器负载电压通常是12VDC,但使用到柴油车时是24VDC,一般应确定该汽车继电器是否有24VDC规格。
触点负载应大于最小允许负载,避免信号传输错误,汽车继电器一般为6VDC 1A。
负载开断频率应低于说明书规定值,若无规定,可联系继电器生产厂家,取得技术支持。
在使用继电器控制的线路中,应充分考虑继电器的各种触点短路、开路故障,设计必要的避免因此造成电源短路或影响行车安全等严重的事故。
汽车继电器使用于除阻性负载外的其他负载时,应按ISO/TS16949标准的要求进行实际负载开断试验。
在选择继电器时,不要只根据外壳上标注的负载值,而应参照网站上产品说明书进行选择,注意触点额定电压为12VDC或24VDC,寿命次数为多少。
产品使用于车载通讯、音响、定位系统等低电平负载场合时,应选用相应的通讯继电器,该类继电器有分叉触点,接触可靠性高,但必须确定其抗振动、冲击性能满足要求。
继电器正常使用时可以不加灭电弧电路,在开断具有冲击电流、冲击电压的负载时,加入适当的灭弧电路不但可以延长产品寿命,还可以降低对其它元件的电磁干扰。但特别应防止电路振荡,以免产生相反效果,应尽量根据实际电路进行灭弧效果测试。
继电器寿命的寿命周期是否与汽车模块平衡。
触点材料与负荷的种类是否符合。特别是用于闪光灯负载和低水平使用时必须注意。
环境应力会降低继电器寿命,应确认选择的汽车继电器满足环境应力的要求。
2、触点材料
触点材料是继电器使用的最关键的材料,其性能高低决定继电器的质量水平。各种材料特点、使用场合不同,下面分别进行介绍:
材料 优点 缺点 应用场合
Ag-Pd 抗硫化性好 价格昂贵 车载通讯继电器
AgNi0.15 电导率和热导率高,机械强度和耐电腐蚀较强。 接触电阻比Ag略大 阻性和短时、低冲击电流的感性或电机负载
AgSnO 抗烧蚀性能优良。抗熔焊性优于AgCdO,抗材料转移性能好。 接触电阻大、价格高 大电流阻性负载、有较高冲击电流的电机负载、灯负载
特殊AgSnO 抗烧蚀性能优良。抗熔焊性好,抗灯负载正极材料转移性能好。 接触电阻大、价格非常高 闪光灯负载,及灯丝常处于冷态的汽车灯负载,
五、时间参量选择原则
继电器的时间参量选择时应考虑以下参数:
吸动时间
释放时间
吸动回跳时间
释放回跳时间
继电器时间参数定义如下:
时间测试时,示波器上的典型波形图
①常开触点 ② 常闭触点
③ 先断后合触点 ④ 先合后断触点
O 动作时间 r 释放时间
b 回跳时间 t 转换时间
s 桥接时间 c 达稳定闭合时间
选用时注意事项:
1)在汽车继电器使用时一般对于时间参数不关注。
2)关注组合汽车继电器的时间,如闪光频率。
六、环境条件选择原则
继电器选用时应考虑以下环境参数:
1、温度
1)高温条件下,绝缘材料软化、熔化;低温条件下,材料龟裂,绝缘抗电性能下降,以致失效。但选择性能优良的工程塑料,均可以满足要求。
2)高、低温交替作用下,造成结构松动,活动部件位置发生变化,导致吸合、释放失控,触点接触不良或不接触。
3)低温下,继电器内部水汽凝露、结冰,导致绝缘性能下降。
4)高温条件下,线圈电阻增大,吸动电压相应增大,造成不吸动或似吸非吸,导致继电器失效。
5)高温条件下,触点切换功率负载时,断弧能力降低,触点腐蚀、金属转移加剧,失效可能性增加,寿命缩短。
2、湿热
湿热对继电器性能构成威胁,具体表现如下:
1)长期湿热将直接导致绝缘抗电水平的下降,以致完全失效。特别是长期裸露贮存或使用过程中继电器绝缘受砂尘等污染后再受湿热作用,将造成绝缘失效。
2)非密封继电器在湿热条件下,线圈因电化学腐蚀或霉变而断线,触点电化学腐蚀、氧化加剧;金属零件腐蚀速度显著上升,继电器性能变坏,工作可靠性变差,以致完全失效。
3)在湿热条件下,触点带电切换负载时,拉弧现象加剧,导致电寿命缩短。在热带、亚热带使用的电子产品,产品设计、材料选用时必须充分考虑湿热问题。
3、砂尘
砂尘污染导致继电器的失效,还未引起用户的足够重视。在自然环境条件下或一般工业车间环境条件下,尤其汽车上使用的电子装置,砂尘往往会通过散热孔、裂纹部位渗入继电器内部,经日积月累,开机察看,均可发现污尘堆积,导致活动部件转动(滑动)不灵,卡死;触点电接触失效;在潮湿作用下,金属件腐蚀加剧,绝缘件绝缘性能下降,以致失效。某些电力保护用继电器、汽车用继电器出厂前检验合格,经一、二年运行后,继电器不断出现故障。设计和使用时必须充分考虑砂尘污染的危害。用户根据实用需要,提出特定要求。
4、化学气氛污染
环境气氛中的有机蒸气、氧气、二氧化硫、盐雾等,对继电器触点、金属零件、线圈、绝缘零件有侵蚀性影响,导致触点电接触不良,以致失效;导致线圈引线锈蚀断线、绝缘水平下降。
化学有害气体在自然界是普遍存在,只是在不同场合,有害气体(蒸汽)的种类不同。采取工艺措施,可以减轻、免除其侵蚀,但成本将大幅度上升。如军用密封继电器,通过长时间高温真空焙烘、在继电器内腔充以高纯N2,采用电子束(或激光)进行密封焊,其泄漏率可达10-8pa.cm3/s;触点镀1~3u的金。
民用继电器受价格的限制,一般只是加塑封外壳缓解大气中有害气体(蒸气)的侵蚀,使用时,根据继电器负载大小,环境的优劣,可酌情将工艺孔打开,以提高散热能力,减少内部有机蒸气、二氧化硫对触点表面的污染。
5、机械振动
继电器在强动力设备周围、在运输途中都会遇到一定频率范围、加速度值的振动;随机振动可代表导弹、高推力喷气机和火箭发动机产生的现场振动应力作用。
振动对继电器的影响表现在:
a.振动可能致使机械结构件松动、疲劳、断裂失效;
b.闭合触点因振动产生大于标准规定时间的瞬间断开而失效;
c.断开触点因振动产生大于标准规定时间的瞬间闭合而失效;
d.导致活动零件之间的相对运动,产生噪声、磨损和其他物理失效。
6、冲击
继电器在运输、搬运、使用中经常会受到机械冲击的作用。
冲击对继电器的影响表现在:
1)由于冲击,造成结构松动、损伤、断裂而丧失工作能力。
2)由于冲击,闭合触点产生大于规定要求的瞬间断开而失效;断开触点产生大于规定要求的瞬间闭合而失效。
于是,针对(1),要求继电器应具有抗冲击强度的性能,在试验前后进行的规定项目的测量结果,应符合产品标准要求。
针对(2),继电器应具有抗冲击稳定性的性能,要对触点的接触状态进行动态监测。
七、安全参数选择原则
继电器安全要求选用时考虑以下参数:
1、绝缘材料
产品使用的绝缘材料应具有良好的耐温性能,长期工作温度应达到125℃。
2、绝缘耐压水平
继电器的耐压分为触点间耐压、绝缘电阻;触点线圈间耐压、绝缘电阻。汽车继电器的典型值是耐压 500 VAC、绝缘电阻 100 MΩ。
3、电磁兼容
电磁兼容(EMC)是汽车继电器在电磁环境中工作时不干扰或不受干扰的能力。EMC已经成为产品质量的一个重要判断标准。电磁兼容(EMC)分为电磁干扰(EMI)和电磁抗干扰(EMS)。由于汽车继电器使用的是统一电源,继电器线圈断开时会形成高压,干扰其他系统和模块,因此,插入式汽车继电器通常会有并联电阻或二极管进行瞬态抑制,使线圈反电势小于100V。
继电器触点开断时产生电弧,发射出电磁波,会影响IC工作。如果出现这种情况,可在触点加灭弧电路。也可以适当加大继电器与IC的距离。
拉弧:电压超过空气的耐受力使空气电离变成导体也就是产生电弧 电弧一般会绕过绝缘体沿着绝缘体的表面产生 因而会对绝缘体产生损坏 如电弧的高温会使绝缘体融化或碎裂。辟如开关上表明额定短路开断电流20KA,表示20KA内的短路跳闸触头灭弧热元件动作等有效,超过这个绝限跳闸接头灭弧热元件动作不保证,会产生 拉弧。
电弧:电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。电弧的形成是触头间中性质子(分子和原子)被游离的过程。开关触头分离时,触头间距离很小,电场强度E很高(E = U/d)。当电场强度超过3×10^6V/m时,阴极表面的电子就会被电场力拉出而形成触头空间的自由电子。这种游离方式称为:强电场发射。
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报